• Backeberg, B. C., F. Counillon, J. A. Johannessen, and M.-I. Pujol, 2014: Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system. Ocean Dyn., 64, 11211136, https://doi.org/10.1007/s10236-014-0717-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, https://doi.org/10.1007/s10236-006-0082-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Quart. J. Roy. Meteor. Soc., 136, 10361050, https://doi.org/10.1002/qj.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borrione, I., P. Oddo, A. Russo, and E. Coelho, 2019: Understanding altimetry signals in the northeastern Ligurian Sea using a multi-platform approach. Deep-Sea Res. I, 145, 8396, https://doi.org/10.1016/j.dsr.2019.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brankart, J., C. Ubelmann, C. Testut, E. Cosme, P. Brasseur, and J. Verron, 2009: Efficient parameterization of the observation error covariance matrix for square root or ensemble Kalman filters: Application to ocean altimetry. Mon. Wea. Rev., 137, 19081927, https://doi.org/10.1175/2008MWR2693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brankart, J., E. Cosme, C. Testut, P. Brasseur, and J. Verron, 2010: Efficient adaptive error parameterizations for square root or ensemble Kalman filters: Application to the control of ocean mesoscale signals. Mon. Wea. Rev., 138, 932950, https://doi.org/10.1175/2009MWR3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., C. Tronconi, A. Pisano, and R. Santoleri, 2013: High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sens. Environ., 129, 116, https://doi.org/10.1016/j.rse.2012.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., A. Pisano, C. Tronconi, and R. Santoleri, 2015: Evaluation of different covariance models for the operational interpolation of high resolution satellite sea surface temperature data over the Mediterranean Sea. Remote Sens. Environ., 164, 334343, https://doi.org/10.1016/j.rse.2015.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D. A., and J. L. McClean, 2008: Sea level anomaly signals in the Agulhas Current region. Geophys. Res. Lett., 35, L13601, https://doi.org/10.1029/2008GL034087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrere, L., Y. Faugère, and M. Ablain, 2016: Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis. Ocean Sci., 12, 825842, https://doi.org/10.5194/os-12-825-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., E. J. Walsh, and J. L. MacArthur, 1989: Pulse compression and sea level tracking in satellite altimetry. J. Atmos. Oceanic Technol., 6, 407438, https://doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., J. C. Ries, B. J. Haines, L. L. Fu, and P. S. Callahan, 2001: Satellite altimetry. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, L. L. Fu and A. Cazenave, Eds., Academic Press, 1–132.

    • Crossref
    • Export Citation
  • Cheney, R. E., 2001: Satellite altimetry. Encyclopedia of Ocean Sciences, 2nd ed., J. H. Steele, Ed., Academic Press, 58–64, https://doi.org/10.1016/B978-012374473-9.00340-4.

    • Crossref
    • Export Citation
  • Cooper, M., and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 10591077, https://doi.org/10.1029/95JC02902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, and B. Chapnik, 2010: Objective validation of data assimilation systems: Diagnosing suboptimality. Seminar on Diagnosis of Forecasting and Data Assimilation Systems, Reading, United Kingdom, ECMWF, https://www.ecmwf.int/node/9017.

  • Dibarboure, G., F. Boy, J. D. Desjonqueres, S. Labroue, Y. Lasne, N. Picot, J. C. Poisson, and P. Thibaut, 2014: Investigating short-wavelength correlated errors on low-resolution mode altimetry. J. Atmos. Oceanic Technol., 31, 13371362, https://doi.org/10.1175/JTECH-D-13-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobricic, S., and N. Pinardi, 2008: An oceanographic three-dimensional assimilation scheme. Ocean Modell., 22, 89105, https://doi.org/10.1016/j.ocemod.2008.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Akkraoui, A., Y. Trémolet, and R. Todling, 2013: Preconditioning of variational data assimilation and the use of a bi-conjugate gradient method. Quart. J. Roy. Meteor. Soc., 139, 731741, https://doi.org/10.1002/qj.1997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A. M., S. L. Dance, and J. A. Waller, 2018: On the interaction of observation and prior error correlations in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 4862, https://doi.org/10.1002/qj.3183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., D. B. Chelton, P.-Y. Le Traon, and R. Morrow, 2010: Eddy dynamics from satellite altimetry. Oceanography, 23, 1425, https://doi.org/10.5670/oceanog.2010.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaultier, L., C. Ubelmann, and L. Fu, 2016: The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Oceanic Technol., 33, 119126, https://doi.org/10.1175/JTECH-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G., and C. F. Van Loan, 2012. Matrix Computations. 4th ed. Johns Hopkins University Press, 756 pp.

  • Haben, S. A., A. S. Lawless, and N. K. Nichols, 2011: Conditioning and preconditioning of the variational data assimilation problem. Comput. Fluids, 46, 252256, https://doi.org/10.1016/j.compfluid.2010.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111136, https://doi.org/10.1111/j.1600-0870.1986.tb00460.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., and Coauthors, 2017: The Copernicus Marine Environmental Monitoring Service: Main scientific achievements and future prospects. Mercator Ocean J., 56, 1101.

    • Search Google Scholar
    • Export Citation
  • Liu, Z. Q., and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc., 129, 30133035, https://doi.org/10.1256/qj.02.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2012: NEMO ocean engine. Note du Pole de Modélisation de l’Institut Pierre-Simon Laplace 27, 217 pp.

  • Michel, Y., 2018: Revisiting Fisher’s approach to the handling of horizontal spatial correlations of observation errors in a variational framework. Quart. J. Roy. Meteor. Soc., 144, 20112025, https://doi.org/10.1002/qj.3249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrow, R., A. Carret, F. Birol, F. Nino, G. Valladeau, F. Boy, C. Bachelier, and B. Zakardjian, 2017: Observability of fine-scale ocean dynamics in the northwestern Mediterranean Sea. Ocean Sci., 13, 1329, https://doi.org/10.5194/os-13-13-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oddo, P., A. Bonaduce, N. Pinardi, and A. Guarnieri, 2014: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO. Geosci. Model Dev., 7, 30013015, https://doi.org/10.5194/gmd-7-3001-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oddo, P., A. Storto, S. Dobricic, A. Russo, C. Lewis, R. Onken, and E. Coelho, 2016: A hybrid variational-ensemble data assimilation scheme with systematic error correction for limited-area ocean models. Ocean Sci., 12, 11371153, https://doi.org/10.5194/os-12-1137-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and P. Sakov, 2008: Representation error of oceanic observations for data assimilation. J. Atmos. Oceanic Technol., 25, 10041017, https://doi.org/10.1175/2007JTECHO558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., G. B. Brassington, D. A. Griffin, and A. Schiller, 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modell., 21, 4670, https://doi.org/10.1016/j.ocemod.2007.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettenuzzo, D., W. G. Large, and N. Pinardi, 2010: On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J. Geophys. Res., 115, C06022, https://doi.org/10.1029/2009JC005631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., S. Dobricic, N. Pinardi, and M. Adani, 2010: Impact of multialtimeter sea level assimilation in the Mediterranean forecasting model. J. Atmos. Oceanic Technol., 27, 20652082, https://doi.org/10.1175/2010JTECHO715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quartly, G. D., 1998: Determination of oceanic rain rate and rain cell structure from altimeter waveform data. Part I: Theory. J. Atmos. Oceanic Technol., 15, 13611378, https://doi.org/10.1175/1520-0426(1998)015<1361:DOORRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainwater, S., C. H. Bishop, and W. F. Campbell, 2015: The benefits of correlated observation errors for small scales. Quart. J. Roy. Meteor. Soc., 141, 34393445, https://doi.org/10.1002/qj.2582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré, 2014: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci., 10, 731744, https://doi.org/10.5194/os-10-731-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggiero, G. A., E. Cosme, J. Brankart, J. Le Sommer, and C. Ubelmann, 2016: An efficient way to account for observation error correlations in the assimilation of data from the future SWOT high-resolution altimeter mission. J. Atmos. Oceanic Technol., 33, 27552768, https://doi.org/10.1175/JTECH-D-16-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, and N. K. Nichols, 2013: Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model. Tellus, 65A, 19546, https://doi.org/10.3402/tellusa.v65i0.19546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., 2016: Variational quality control of hydrographic profile data with non-Gaussian errors for global ocean variational data assimilation systems. Ocean Modell., 104, 226241, https://doi.org/10.1016/j.ocemod.2016.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Dobricic, S. Masina, and P. Di Pietro, 2011: Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon. Wea. Rev., 139, 738754, https://doi.org/10.1175/2010MWR3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Masina, and S. Dobricic, 2013: Ensemble spread-based assessment of observation impact: Application to a global ocean analysis system. Quart. J. Roy. Meteor. Soc., 139, 18421862, https://doi.org/10.1002/qj.2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., and Coauthors, 2017: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Climate Dyn., 49, 709729, https://doi.org/10.1007/s00382-015-2554-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taburet, G., and Coauthors, 2018: Sea level TAC—DUACS products. Copernicus Marine Environment Monitoring Service Doc. CMEMS-SL-QUID-008-032-051, 66 pp., http://cmems-resources.cls.fr/documents/QUID/CMEMS-SL-QUID-008-032-051.pdf.

  • Verrier, S., P.-Y. Le Traon, and E. Remy, 2017: Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system. Ocean Sci., 13, 10771092, https://doi.org/10.5194/os-13-1077-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidard, A., M. Balmaseda, and D. Anderson, 2009: Assimilation of altimeter data in the ECMWF ocean analysis system 3. Mon. Wea. Rev., 137, 13931408, https://doi.org/10.1175/2008MWR2668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., S. L. Dance, and N. K. Nichols, 2016: Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. Quart. J. Roy. Meteor. Soc., 142, 418431, https://doi.org/10.1002/qj.2661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherall, P., and Coauthors, 2015: A new digital bathymetric model of the world’s oceans. Earth Space Sci., 2, 331345, https://doi.org/10.1002/2015EA000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., C. Deltel, E. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance operator for variational ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 36053625, https://doi.org/10.1256/qj.05.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weston, P., 2011. Progress towards the implementation of correlated observation errors in 4D-Var. Met Office Tech. Rep. 560, 33 pp.

  • Wunsch, C., and D. Stammer, 1998: Satellite altimetry, the marine geoid, and the oceanic circulation. Annu. Rev. Earth Planet. Sci., 26, 219253, https://doi.org/10.1146/annurev.earth.26.1.219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., J. M. D’Addezio, G. Panteleev, and G. Jacobs, 2018: On the approximation of the inverse error covariances of high-resolution satellite altimetry data. Quart. J. Roy. Meteor. Soc., 144, 19952000, https://doi.org/10.1002/qj.3336.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 339 210 2
PDF Downloads 248 142 7

Introducing Along-Track Error Correlations for Altimetry Data in a Regional Ocean Prediction System

View More View Less
  • 1 Centre for Maritime Research and Experimentation, La Spezia, Italy
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Because of the systematic error in the processing of altimetry data, sea level anomaly (SLA) observation errors are likely affected by nonnegligible spatial correlations. To account for these, we exploit the synergy of altimetry data with in situ profiles from gliders, piloted to follow the altimetry tracks during the Long-Term Glider Mission for Environmental Characterization 2017 (LOGMEC17) observational campaign in the Ligurian Sea. The assimilation of along-track unfiltered sea level anomalies in a regional ocean analysis and forecast system is consequently optimized by means of introducing spatial correlations for the SLA observation errors. In particular, collocated data of glider and altimetry are used to derive an along-track error covariance model for the sea level anomaly assimilation, assuming that most of the covariance behavior versus separation distance stems from altimetry. Spatial scales of the altimetry error are found to have a correlation radius of about 12 km for the dataset utilized in the Ligurian Sea, using a simple Gaussian shape for the error correlation, shorter than the correlation radius found through assimilation output diagnostics. A variational data assimilation system is modified to relax the usual assumption of uncorrelated altimetry observation errors, thus allowing for along-track error correlations. Its implementation provides promising results in the regional ocean prediction system, outperforming in most verification skill scores the use of uncorrelated observational errors without compromising the analysis scheme efficiency.

Current affiliation: Ocean Acoustic Services and Instrumental Systems, Lexington, Massachusetts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea Storto, andrea.storto@cmre.nato.int

Abstract

Because of the systematic error in the processing of altimetry data, sea level anomaly (SLA) observation errors are likely affected by nonnegligible spatial correlations. To account for these, we exploit the synergy of altimetry data with in situ profiles from gliders, piloted to follow the altimetry tracks during the Long-Term Glider Mission for Environmental Characterization 2017 (LOGMEC17) observational campaign in the Ligurian Sea. The assimilation of along-track unfiltered sea level anomalies in a regional ocean analysis and forecast system is consequently optimized by means of introducing spatial correlations for the SLA observation errors. In particular, collocated data of glider and altimetry are used to derive an along-track error covariance model for the sea level anomaly assimilation, assuming that most of the covariance behavior versus separation distance stems from altimetry. Spatial scales of the altimetry error are found to have a correlation radius of about 12 km for the dataset utilized in the Ligurian Sea, using a simple Gaussian shape for the error correlation, shorter than the correlation radius found through assimilation output diagnostics. A variational data assimilation system is modified to relax the usual assumption of uncorrelated altimetry observation errors, thus allowing for along-track error correlations. Its implementation provides promising results in the regional ocean prediction system, outperforming in most verification skill scores the use of uncorrelated observational errors without compromising the analysis scheme efficiency.

Current affiliation: Ocean Acoustic Services and Instrumental Systems, Lexington, Massachusetts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea Storto, andrea.storto@cmre.nato.int
Save