• Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478, https://doi.org/10.1016/S0065-2687(08)60009-6.

    • Crossref
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., R. Garreaud, and M. Falvey, 2009: Effect of the Andes Cordillera on precipitation from a midlatitude cold front. Mon. Wea. Rev., 137, 30923109, https://doi.org/10.1175/2009MWR2881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298, https://doi.org/10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bezvesilniy, O., G. Peters, and D. Vavriv, 2013: Estimating cloud and rain parameters from Doppler radar data. Radio Phys. Radio Astron., 8, 296.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1998: Absorption and Scattering of Light by Small Particles. Wiley-VCH Verlag, 530 pp., https://doi.org/10.1002/9783527618156.

    • Search Google Scholar
    • Export Citation
  • Briggs, B. H., 1984: The analysis of spaced sensor records by correlation techniques. Middle Atmosphere Program, R. Vincent, Ed., Vol. 13, University of Illinois, 166–186.

  • Briggs, B. H., and R. A. Vincent, 1992: Spaced-antenna analysis in the frequency domain. Radio Sci., 27, 117129, https://doi.org/10.1029/91RS03051.

  • Bringi, V., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 639 pp.

  • Bringi, V., M. Thurai, and D. Baumgardner, 2018: Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech., 11, 13771384, https://doi.org/10.5194/amt-11-1377-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., and A. Maitra, 2016: Vertical profile of rain: Ka band radar observations at tropical locations. J. Hydrol., 534, 3141, https://doi.org/10.1016/j.jhydrol.2015.12.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., A. K. Shukla, and A. Maitra, 2010: Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Adv. Space Res., 45, 12351243, https://doi.org/10.1016/j.asr.2010.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., A. Maitra, and A. K. Shukla, 2011a: Melting layer characteristics at different climatic conditions in the Indian region: Ground based measurements and satellite observations. Atmos. Res., 101, 7883, https://doi.org/10.1016/j.atmosres.2011.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., S. Talukdar, A. Bhattacharya, A. Adhikari, and A. Maitra, 2011b: Vertical profile of Z-R relationship and its seasonal variation at a tropical location. 2011 IEEE Applied Electromagnetics Conf., Kolkata, India, IEEE, 18–22, https://doi.org/10.1109/AEMC.2011.6256915.

    • Crossref
    • Export Citation
  • Derin, Y., and et al. , 2016: Multiregional satellite precipitation products evaluation over complex terrain. J. Hydrometeor., 17, 18171836, https://doi.org/10.1175/JHM-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1984: Doppler Radar and Weather Observations. 2nd ed. Vol. 33, Elsevier, 545 pp., https://doi.org/10.1016/B978-0-12-221422-6.50022-X.

    • Crossref
    • Export Citation
  • Ellis, S. M., and J. Vivekanandan, 2011: Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci., 46, RS2021, https://doi.org/10.1029/2010RS004361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firda, J. M., S. M. Sekelsky, and R. E. McIntosh, 1999: Application of dual-frequency millimeter-wave Doppler spectra for the retrieval of drop size distributions and vertical air motion in rain. J. Atmos. Oceanic Technol., 16, 216236, https://doi.org/10.1175/1520-0426(1999)016<0216:AODFMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., E. P. Luke, and P. Kollias, 2012: Characterization of vertical velocity and drop size distribution parameters in widespread precipitation at ARM facilities. J. Appl. Meteor. Climatol., 51, 380391, https://doi.org/10.1175/JAMC-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and R. S. Sekhon, 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13, 808811, https://doi.org/10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J.-C. Espinoza, S. Chavez, J.-E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, M. Maahn, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 22252233, https://doi.org/10.1002/2015GL067618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, and F. Marks Jr., 2002: Why Mie? Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83, 14711484, https://doi.org/10.1175/BAMS-83-10-1471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, and F. Marks Jr., 2003: Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res., 108, 4053, https://doi.org/10.1029/2001JD002033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, https://doi.org/10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars. Part I: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, https://doi.org/10.1175/JTECH-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, B. L., and F. F. Kretschmer, 1982: Linear frequency modulation derived polyphase pulse compression codes. IEEE Trans. Aerosp. Electron. Syst., 18, 637641, https://doi.org/10.1109/TAES.1982.309276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1988: Observation of rain at vertical incidence with a 94 GHz Doppler radar: An insight on Mie scattering. Geophys. Res. Lett., 15, 11251128, https://doi.org/10.1029/GL015i010p01125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved micro rain radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, https://doi.org/10.5194/amt-5-2661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandeep, J. S., 2009: Analysis effect of water on a Ka-band antenna. Prog. Electromagn. Res. Lett., 9, 4957, https://doi.org/10.2528/PIERL09041604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantas, V. M., Z. Liu, C. Caro, and A. J. S. C. Pereira, 2015: Validation of TRMM Multi-Satellite Precipitation Analysis (TMPA) products in the Peruvian Andes. Atmos. Res., 163, 132145, https://doi.org/10.1016/j.atmosres.2014.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshal, J. S., and W. M. Palmer, 1948: The dristibution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez Grimaldo, A., Y. Silva Vidal, and K. Takahashi, 2005: Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la Cuenca del rio Mantaro. Vol. III. Instituto Geofísico del Perú, 106 pp.

  • McDonald, A. J., T. K. Carey-Smith, D. A. Hooper, G. J. Fraser, and B. P. Lublow, 2004: The effect of precipitation on wind-profiler clear air returns. Ann. Geophys., 22, 39593970, https://doi.org/10.5194/angeo-22-3959-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourre, L., T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin, 2016: Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci., 20, 125141, https://doi.org/10.5194/hess-20-125-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moya-Álvarez, A. S., J. Gálvez, A. Holguín, R. Estevan, S. Kumar, E. Villalobos, D. Martínez-Castro, and Y. Silva, 2018a: Extreme rainfall forecast with the WRF-ARW model in the central Andes of Peru. Atmosphere, 9, 362, https://doi.org/10.3390/atmos9090362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moya-Álvarez, A. S., D. Martínez-Castro, J. L. Flores, and Y. Silva, 2018b: Sensitivity study on the influence of parameterization schemes in WRF-ARW model on short- and medium-range precipitation forecasts in the central Andes of Peru. Adv. Meteor., 2018, 1381092, https://doi.org/10.1155/2018/1381092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moya-Álvarez, A. S., D. Martínez-Castro, S. Kumar, R. Estevan, and Y. Silva, 2019: Response of the WRF Model to different resolutions in the rainfall forecast over the complex Peruvian orography. Theor. Appl. Climatol., 137, 29933007, https://doi.org/10.1007/s00704-019-02782-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oscanoa, J., C. Castillo, and D. Scipion, 2016: CLAIRE: An UHF wind profiler radar for turbulence and precipitation studies. 2016 IEEE 23rd Int. Congress on Electronics, Electrical Engineering and Computing, Piura, Peru, IEEE, https://doi.org/10.1109/INTERCON.2016.7815577.

    • Crossref
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking micro rain radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and M. Clemens, 2010: Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions. J. Atmos. Oceanic Technol., 27, 829842, https://doi.org/10.1175/2009JTECHA1342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfitzenmaier, L., A. Battaglia, and P. Kollias, 2019: The impact of the radar-sampling volume on multiwavelength spaceborne radar measurements using airborne radar observations. Remote Sens., 11, 2263, https://doi.org/10.3390/rs11192263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol., 12, 257267, https://doi.org/10.1175/1520-0426(1995)012<0257:URMRVV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schafer, R., S. Avery, P. May, D. Rajopadhyaya, and C. Williams, 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19, 864874, https://doi.org/10.1175/1520-0426(2002)019<0864:EORDSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheel, M. L. M., M. Rohrer, C. Huggel, D. Santos Villar, E. Silvestre, and G. J. Huffman, 2011: Evaluation of TRMM Multi-Satellite Precipitation Analysis (TMPA) performance in the central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci., 15, 26492663, https://doi.org/10.5194/hess-15-2649-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT PARSIVEL2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and A. Battaglia, 2015: Dual-frequency radar doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J. Geophys. Res. Atmos., 120, 55855601, https://doi.org/10.1002/2014JD023023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, E. Luke, and P. Kollias, 2017: Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case-study. Quart. J. Roy. Meteor. Soc., 143, 13641380, https://doi.org/10.1002/qj.3010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and et al. , 2019: The microphysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations. J. Geophys. Res. Atmos., 124, 87648792, https://doi.org/10.1029/2018JD029858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdivia, J. M., 2018: Cuantificación de lluvias usando el radar perfilador de banda Ka MIRA 35c. B.S. thesis, Universidad Nacional José Faustino Sánchez Carrión, 95 pp.

  • Valdivia, J. M., K. Contreras, D. Martinez-Castro, E. Villalobos-Puma, L. F. Suarez-Salas, and Y. Silva, 2020: Dataset on raindrop size distribution, raindrop fall velocity and precipitation data measured by disdrometers and rain gauges over Peruvian central Andes (12.0°S). Data Brief, 29, 105215, https://doi.org/10.1016/j.dib.2020.105215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viale, M., and F. A. Norte, 2009: Strong cross-barrier flow under stable conditions producing intense winter orographic precipitation: A case study over the subtropical central Andes. Wea. Forecasting, 24, 10091031, https://doi.org/10.1175/2009WAF2222168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, https://doi.org/10.1109/TAU.1967.1161901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37, 1024, https://doi.org/10.1029/2000RS002603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2009: Accuracy of reflectivity estimated from profiling radars. 2009 IEEE Radar Conf., Pasadena, CA, IEEE, https://doi.org/10.1109/RADAR.2009.4976996.

    • Crossref
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 9961012, https://doi.org/10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., M. Maahn, J. C. Hardin, and G. D. Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35-GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 49634980, https://doi.org/10.5194/amt-11-4963-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J. K., and J. Vivekanandan, 2007: Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. J. Atmos. Oceanic Technol., 24, 13171336, https://doi.org/10.1175/JTECH2042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 213 213 25
Full Text Views 26 26 10
PDF Downloads 42 42 16

Multi-Instrument Rainfall-Rate Estimation in the Peruvian Central Andes

View More View Less
  • 1 Instituto Geofísico del Perú, Lima, Peru
© Get Permissions
Restricted access

Abstract

Agriculture is one of the main economic activities in the Peruvian Andes; rainwater alone irrigates more than 80% of the fields used for agriculture purposes. However, the cloud and rain generation mechanisms in the Andes still remain mostly unknown. In early 2014, the Instituto Geofísico del Perú (IGP) decided to intensify studies in the central Andes to better understand cloud microphysics; the Atmospheric Microphysics And Radiation Laboratory officially started operations in 2015 at IGP’s Huancayo Observatory. In this work, a Ka-band cloud profiler [cloud and precipitation profiler (MIRA-35c)], a UHF wind profiler [Clear-Air and Rainfall Estimation (CLAIRE)], and a VHF wind profiler [Boundary Layer and Tropospheric Radar (BLTR)] are used to estimate rainfall rate at different conditions. The height dependence of the drop size diameter versus the terminal velocity, obtained by the radars, in the central Andes (3350 m MSL) was evaluated. The estimates of rainfall rate are validated to ground measurements through a disdrometer [second-generation Particle, Size, and Velocity (PARSIVEL2)] and two rain gauges. The biases in the cumulative rainfall totals for the PARSIVEL2, MIRA-35c, and CLAIRE were 18%, 23%, and −32%, respectively, and their respective absolute biases were 19%, 36%, and 63%. These results suggest that a real-time calibration of the radars, MIRA-35c and CLAIRE, is necessary for better estimation of precipitation at the ground. They also show that the correction of the raindrop terminal fall velocity, obtained by separating the vertical wind velocity (BLTR), used in the estimation the raindrop diameter is not sufficient, especially in convective conditions.

ORCID: 0000-0003-0709-1163.

ORCID: 0000-0002-6807-0238.

ORCID: 0000-0001-9067-863X.

ORCID: 0000-0003-0653-0224.

Corresponding author: Danny E. Scipión, dscipion@igp.gob.pe

Abstract

Agriculture is one of the main economic activities in the Peruvian Andes; rainwater alone irrigates more than 80% of the fields used for agriculture purposes. However, the cloud and rain generation mechanisms in the Andes still remain mostly unknown. In early 2014, the Instituto Geofísico del Perú (IGP) decided to intensify studies in the central Andes to better understand cloud microphysics; the Atmospheric Microphysics And Radiation Laboratory officially started operations in 2015 at IGP’s Huancayo Observatory. In this work, a Ka-band cloud profiler [cloud and precipitation profiler (MIRA-35c)], a UHF wind profiler [Clear-Air and Rainfall Estimation (CLAIRE)], and a VHF wind profiler [Boundary Layer and Tropospheric Radar (BLTR)] are used to estimate rainfall rate at different conditions. The height dependence of the drop size diameter versus the terminal velocity, obtained by the radars, in the central Andes (3350 m MSL) was evaluated. The estimates of rainfall rate are validated to ground measurements through a disdrometer [second-generation Particle, Size, and Velocity (PARSIVEL2)] and two rain gauges. The biases in the cumulative rainfall totals for the PARSIVEL2, MIRA-35c, and CLAIRE were 18%, 23%, and −32%, respectively, and their respective absolute biases were 19%, 36%, and 63%. These results suggest that a real-time calibration of the radars, MIRA-35c and CLAIRE, is necessary for better estimation of precipitation at the ground. They also show that the correction of the raindrop terminal fall velocity, obtained by separating the vertical wind velocity (BLTR), used in the estimation the raindrop diameter is not sufficient, especially in convective conditions.

ORCID: 0000-0003-0709-1163.

ORCID: 0000-0002-6807-0238.

ORCID: 0000-0001-9067-863X.

ORCID: 0000-0003-0653-0224.

Corresponding author: Danny E. Scipión, dscipion@igp.gob.pe
Save