• De Sousa, J. B., P. McGuillivary, J. Vicente, M. Nunes Bento, J. A. P. Morgado, M. Madruga Matos, R. A. Gomes Bencatel, and P. Mónica de Oliveira, 2015: Unmanned aircraft systems for maritime operations. Handbook of Unmanned Aerial Vehicles, K. Valavanis and G. Vachtsevanos, Eds., Springer, 2787–2811, https://doi.org/10.1007/978-90-481-9707-1_75.

    • Crossref
    • Export Citation
  • Díaz Méndez, G. M., M. C. Haller, B. Raubenheimer, S. Elgar, and D. A. Honegger, 2015: Radar remote sensing estimates of waves and wave forcing at a tidal inlet. J. Atmos. Oceanic Technol., 32, 842854, https://doi.org/10.1175/JTECH-D-14-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohan, K., 2017: Ocean surface currents from satellite data. J. Geophys. Res. Oceans, 122, 26472651, https://doi.org/10.1002/2017JC012961.

  • Dohan, K., and N. Maximenko, 2010: Monitoring ocean currents with satellite sensors. Oceanography, 23 (4), 94103, https://doi.org/10.5670/oceanog.2010.08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durazo, R., 2015: Seasonality of the transitional region of the California Current system off Baja California. J. Geophys. Res. Oceans, 120, 11731196, https://doi.org/10.1002/2014JC010405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fingas, M., and C. E. Brown, 2011: Oil spill remote sensing: A review. Oil Spill Science and Technology, M. Fingas, Ed., Gulf Publishing Company, 111–169.

    • Crossref
    • Export Citation
  • Grodsky, S. A., R. Lumpkin, and J. A. Carton, 2011: Spurious trends in global surface drifter currents. Geophys. Res. Lett., 38, L10606, https://doi.org/10.1029/2011GL047393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., and et al. , 2016: Sargassum watch warns of incoming seaweed. Eos, Trans. Amer. Geophys. Union, 97, https://doi.org/10.1029/2016EO058355.

  • Kaplan D. M., J. Largier and L. W. Botsford, 2005: HF radar observations of surface circulation off Bodega Bay (Northern California, USA). J. Geophys. Res., 110, C10020, https://doi.org/10.1029/2005JC002959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klimkowska, A., I. Lee, and K. Choi, 2016: Possibilities of UAS for maritime monitoring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 41, 885891, https://doi.org/10.5194/isprs-archives-XLI-B1-885-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mateos, E., S. G. Marinone Moschetto, and M. F. Lavín Peregrina, 2013: Numerical modeling of the coastal circulation off northern Baja California and southern California. Cont. Shelf Res., 58, 5066, https://doi.org/10.1016/j.csr.2013.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miron, P., F. J. Beron Vera, H. J. Olascoaga, G. Froyland, J. Sheinbaum Pardo, and P. Pérez Brunius, 2019: Lagrangian geography of the deep Gulf of Mexico. J. Phys. Oceanogr., 49, 269290, https://doi.org/10.1175/JPO-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., A. Sybrandy, K. Bi, P. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I, 42, 19511964, https://doi.org/10.1016/0967-0637(95)00076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novelli, G., C. M. Guigand, C. Cousin, E. H. Ryan, N. J. M. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., L. Lenain, D. Castel, and W. K. Melville, 2009: A portable airborne scanning lidar system for ocean and coastal applications. J. Atmos. Oceanic Technol., 26, 26262641, https://doi.org/10.1175/2009JTECHO703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., L. Lenain, and W. K. Melville, 2016: The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes. J. Atmos. Oceanic Technol., 33, 20292052, https://doi.org/10.1175/JTECH-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra-Sogas, N., P. D. O’Hara, R. Canessa, P. Keller, and R. Pelot, 2008: Visualization of spatial patterns and temporal trends for aerial surveillance of illegal oil discharges in western Canadian marine waters. Mar. Pollut. Bull., 56, 825833, https://doi.org/10.1016/j.marpolbul.2008.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skrzypietz, T., 2012: Unmanned aircraft systems for civilian mission. Brandenburg Institute for Society and Security Policy Paper 1, 28 pp.

  • Trasviña-Moreno, C. A., R. Blasco, A. Marco, R. Casas, and A. Trasviña-Castro, 2017: Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring. Sensors, 17, 460, https://doi.org/10.3390/s17030460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valente, J., D. Sanz, A. Barrientos, J. del Cerro, A. Ribeiro, and C. Rossi, 2011: Air-ground wireless sensor network for crop monitoring. Sensors, 11, 60886108, https://doi.org/10.3390/s110606088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventura, D., A. Bonifazi, M. F. Gravina, and G. D. Ardizzone, 2017: Unmanned aerial systems (UASs) for environmental monitoring: A review with applications in coastal habitats. Aerial Robots—Aerodynamics, Control and Applications, IntechOpen, https://doi.org/10.5772/intechopen.69598.

    • Crossref
    • Export Citation
  • Verfuss, U. K., and et al. , 2019: A review of unmanned vehicles for the detection and monitoring of marine fauna. Mar. Pollut. Bull., 140, 1729, https://doi.org/10.1016/j.marpolbul.2019.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 179 179 15
Full Text Views 21 21 3
PDF Downloads 20 20 0

Long-Autonomy Unmanned Aircraft Vehicle (UAV) for Quick Release of Ocean Minidrifters

View More View Less
  • 1 Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
  • | 2 Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
  • | 3 Servicios de Diseño e Integración de Sistemas Electrónicos, Tijuana, Baja California, Mexico
  • | 4 Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
  • | 5 Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
© Get Permissions
Restricted access

Abstract

In this work we present an unmanned aircraft vehicle (UAV) designed from off-the-shelf components to release ocean minidrifters. Its endurance (~1 h), payload (~5 kg), offshore range (~30 km), capability of operating into wind conditions of ~10 kt (1 kt ≈ 0.51 m s−1), high-precision autopilot (2–3 m), and flying altitude of ~500 m above sea level, along with its relatively low cost [<$5,000 (U.S. dollars)] enables quick and relatively easy oceanographic applications beyond 10 km offshore. We report here the very first successful ocean drifter releases, performed along the Baja California coast, between Tijuana and Rosarito, Mexico, and the technical details of the UAV. About 50 experiments (flights) allowed us to improve the takeoff and landing, the release tunnel for minidrifters, the cruise speed and altitude to release drifters safely, and to implement a parachute that controls the speed of the freefalling minidrifters. Quick release of up to six drifters (armed with real-time data transfer and web display) between 2 and 12 km offshore were performed at ~500 m above sea level, during a single flight in under 15 min, as opposed to classic techniques using boats or ships that, although can transport much more weight, can take several hours, use more human resources, and increase cost. Here we propose a novel open-source technique that can be used as a simplified method for scientific ocean measurements, as a quick-response emergency tool to map spills or for search and rescue.

Corresponding author: Xavier Flores Vidal, xavier@uabc.edu.mx

Abstract

In this work we present an unmanned aircraft vehicle (UAV) designed from off-the-shelf components to release ocean minidrifters. Its endurance (~1 h), payload (~5 kg), offshore range (~30 km), capability of operating into wind conditions of ~10 kt (1 kt ≈ 0.51 m s−1), high-precision autopilot (2–3 m), and flying altitude of ~500 m above sea level, along with its relatively low cost [<$5,000 (U.S. dollars)] enables quick and relatively easy oceanographic applications beyond 10 km offshore. We report here the very first successful ocean drifter releases, performed along the Baja California coast, between Tijuana and Rosarito, Mexico, and the technical details of the UAV. About 50 experiments (flights) allowed us to improve the takeoff and landing, the release tunnel for minidrifters, the cruise speed and altitude to release drifters safely, and to implement a parachute that controls the speed of the freefalling minidrifters. Quick release of up to six drifters (armed with real-time data transfer and web display) between 2 and 12 km offshore were performed at ~500 m above sea level, during a single flight in under 15 min, as opposed to classic techniques using boats or ships that, although can transport much more weight, can take several hours, use more human resources, and increase cost. Here we propose a novel open-source technique that can be used as a simplified method for scientific ocean measurements, as a quick-response emergency tool to map spills or for search and rescue.

Corresponding author: Xavier Flores Vidal, xavier@uabc.edu.mx
Save