• Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and et al. , 2011: The Oklahoma City Micronet. Meteor. Appl., 18, 252261, https://doi.org/10.1002/MET.189.

  • Bowler, D. E., L. Buyung-Ali, T. M. Knight, and A. S. Pullin, 2010: Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape Urban Plann., 97, 147155, https://doi.org/10.1016/j.landurbplan.2010.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandsma, T., and D. Wolters, 2012: Measurement and statistical modeling of the urban heat island of the city of Utrecht (The Netherlands). J. Appl. Meteor. Climatol., 51, 10461060, https://doi.org/10.1175/JAMC-D-11-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castell, N., M. Kobernus, H. Y. Liu, P. Schneider, W. Lahoz, A. Berre, and J. Noll, 2015: Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach. Urban Climate, 14, 370382, https://doi.org/10.1016/j.uclim.2014.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, T., A. Hsu, D. Manya, and G. Sheriff, 2019: Disproportionately higher exposure to urban heat in lower-income neighborhoods: A multi-city perspective. Environ. Res. Lett., 14, 105003, https://doi.org/10.1088/1748-9326/ab3b99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, L., C. L. Muller, D. T. Young, E. L. Warren, C. S. B. Grimmond, X. M. Cai, and E. J. S. Ferranti, 2015: The Birmingham Urban Climate Laboratory: An open meteorological test bed and challenges of the smart city. Bull. Amer. Meteor. Soc., 96, 15451560, https://doi.org/10.1175/BAMS-D-13-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., C. Yao, T. Honjo, and T. Lin, 2018: The application of a high-density street-level air temperature observation network (HiSAN): Dynamic variation characteristics of urban heat island in Tainan, Taiwan. Sci. Total Environ., 626, 555566, https://doi.org/10.1016/j.scitotenv.2018.01.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chhetri, D. B., Y. Fujimori, and R. Moriwaki, 2017: Local climate classification and urban heat/dry island in Matsuyama plain. J. Japan Soc. Civil Eng., 73B1, 487492, https://doi.org/10.2208/JSCEJHE.73.I_487.

    • Search Google Scholar
    • Export Citation
  • Cohen, P., O. Potchter, and A. Matzarakis, 2012: Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ., 51, 285295, https://doi.org/10.1016/j.buildenv.2011.11.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droste, A. M., J. J. Pape, A. Overeem, H. Leijnse, G. J. Steeneveld, A. J. Delden, and R. Uijlenhoet, 2017: Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil. J. Atmos. Oceanic Technol., 34, 18531866, https://doi.org/10.1175/JTECH-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, P., and et al. , 2020: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ., 236, 111510, https://doi.org/10.1016/j.rse.2019.111510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84, 322, https://doi.org/10.1007/s00704-005-0140-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunawardena, K. R., M. J. Wells, and T. Kershaw, 2017: Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ., 584–585, 10401055, https://doi.org/10.1016/j.scitotenv.2017.01.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammerberg, K., O. Brousse, A. Martilli, and A. Mahdavi, 2018: Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. Int. J. Climatol., 38, e1241e1257, https://doi.org/10.1002/joc.5447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedquist, B. C., and A. J. Brazel, 2006: Urban, residential, and rural climate comparisons from mobile transects and fixed stations: Phoenix, Arizona. J. Ariz.-Nev. Acad. Sci., 38, 7787, https://doi.org/10.2181/1533-6085(2006)38[77:URARCC]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B. G., G. J. Steeneveld, L. W. A. van Hove, C. M. J. Jacobs, and A. A. M. Holtslag, 2014: Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J. Geophys. Res. Atmos., 119, 677692, https://doi.org/10.1002/2012JD019399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, H. C., A. Knudby, P. Sirovyak, Y. Xu, M. Hodul, and S. B. Henderson, 2014: Mapping maximum urban air temperature on hot summer days. Remote Sens. Environ., 154, 3845, https://doi.org/10.1016/j.rse.2014.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmer, B., and I. Eliasson, 1999: Urban–rural vapor pressure differences and their role in the development of urban heat islands. Int. J. Climatol., 19, 9891009, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<989::AID-JOC410>3.0.CO;2-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horst, T. W., 2001: Comments on “Footprint analysis: A closed analytical solution based on height-dependent profiles of wind speed and eddy viscosity.” Bound.-Layer Meteor., 101, 435447, https://doi.org/10.1023/A:1019250918341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, T. K., and O. C. Wo, 2012: Development of a community weather information network in Hong Kong. Weather, 67, 4850, https://doi.org/10.1002/wea.1883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., X. Lee, J. Wang, and K. Wang, 2019: Amplified urban heat islands during heat wave periods. J. Geophys. Res. Atmos., 124, 77977812, https://doi.org/10.1029/2018JD030230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonsson, P., 2004: Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. Int. J. Climatol., 24, 13071322, https://doi.org/10.1002/joc.1064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koskinen, J. T., and et al. , 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325342, https://doi.org/10.1175/2010BAMS2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuttler, W., S. Weber, J. Schonnefeld, and A. Hesselschwerdt, 2007: Urban/rural atmospheric water vapor pressure differences and urban moisture excess in Krefeld, Germany. Int. J. Climatol., 27, 20052015, https://doi.org/10.1002/joc.1558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leconte, F., J. Bouyer, R. Claverie, and M. Pétrissans, 2017: Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor. Appl. Climatol., 130, 365376, https://doi.org/10.1007/s00704-016-1886-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. O., 1991: Urban–rural humidity differences in London. Int. J. Climatol., 11, 577582, https://doi.org/10.1002/joc.3370110509.

  • Lee, X., 2018: Fundamentals of Boundary-Layer Meteorology. Springer International Publishing, 195 pp.

  • Li, H., F. Meier, X. Lee, T. Chakraborty, J. Liu, M. Schaap, and S. Sodoudi, 2018: Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ., 636, 818828, https://doi.org/10.1016/j.scitotenv.2018.04.254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Y. Zhou, Z. Zhu, and W. Cao, 2020: A national dataset of 30 m annual urban extent dynamics (1985-2015) in the conterminous United States. Earth Syst. Sci. Data, 12, 357371, https://doi.org/10.5194/essd-12-357-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., Y. Lin, J. Liu, D. Wang, T. Shui, X. Chen, and Q. Wu, 2017: Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Build. Environ., 117, 191207, https://doi.org/10.1016/j.buildenv.2017.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makido, Y., V. Shandas, S. Ferwati, and D. Sailor, 2016: Daytime variation of urban heat islands: The case study of Doha, Qatar. Climate, 4, 32, https://doi.org/10.3390/cli4020032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, H., A. Matzarakis, and M. G. Iziomon, 2003: Spatio-temporal variability of moisture conditions within the urban canopy layer. Theor. Appl. Climatol., 76, 165179, https://doi.org/10.1007/s00704-003-0010-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, F., D. Fenner, T. Grassmann, M. Otto, and D. Scherer, 2017: Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170191, https://doi.org/10.1016/j.uclim.2017.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirzaei, P. A., and F. Haghighat, 2010: Approaches to study urban heat island—Abilities and limitations. Build. Environ., 45, 21922201, https://doi.org/10.1016/j.buildenv.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moratiel, R., B. Soriano, A. Centeno, D. Spano, and R. L. Snyder, 2017: Wet-bulb, dew point, and air temperature trends in Spain. Theor. Appl. Climatol., 130, 419434, https://doi.org/10.1007/s00704-016-1891-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. L., L. Chapman, C. S. B. Grimmond, D. T. Young, and X. Cai, 2013: Sensors and the city: A review of urban meteorological networks. Int. J. Climatol., 33, 15851600, https://doi.org/10.1002/joc.3678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. L., L. Chapman, S. Johnson, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol., 35, 31853203, https://doi.org/10.1002/joc.4210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noro, M., F. Busato, and R. M. Lazzarin, 2015: Urban heat island in Padua, Italy: Experimental and theoretical analysis. Indoor Built Environ., 24, 514533, https://doi.org/10.1177/1420326X13517404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 2006: Initial guidance to obtain representative meteorological observations at urban sites. WMO Rep. 81, 51 pp.

  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 519 pp.

  • Overeem, A., J. C. R. Robinson, H. Leijnse, G. J. Steeneveld, B. K. P. Horn, and R. Uijlenhoet, 2013: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40, 40814085, https://doi.org/10.1002/grl.50786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pigliautile, I., and A. L. Pisello, 2018: A new wearable monitoring system for investigating pedestrians’ environmental conditions: Development of the experimental tool and start-up findings. Sci. Total Environ., 630, 690706, https://doi.org/10.1016/j.scitotenv.2018.02.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qaid, A., H. B. Lamit, D. R. Ossen, and R. N. R. Shahminan, 2016: Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build., 133, 577595, https://doi.org/10.1016/j.enbuild.2016.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajkovich, N. B., and L. Larsen, 2016: A bicycle-based field measurement systems for the study of thermal exposure in Cuyahoga County, Ohio, USA. Int. J. Environ. Res. Public Health, 13, 159, https://doi.org/10.3390/ijerph13020159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revi, A., D. E. Satterthwaite, F. Aragón-Durand, J. Corfee-Morlot, R. B. R. Kiunsi, M. Pelling, D. C. Roberts, and W. Solecki, 2014: Urban areas. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 535612.

    • Search Google Scholar
    • Export Citation
  • Runkle, J. D., C. Cui, C. Fuhrmann, S. Stevens, J. D. Pinal, and M. M. Sugg, 2019: Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern U.S. Environ. Int., 129, 229238, https://doi.org/10.1016/j.envint.2019.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schatz, J., and C. J. Kucharik, 2014: Seasonality of the urban island effect in Madison, Wisconsin. J. Appl. Meteor. Climatol., 53, 23712386, https://doi.org/10.1175/JAMC-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 2002: Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agric. For. Entomol., 113, 159183, https://doi.org/10.1016/s0168-1923(02)00107-7.

    • Search Google Scholar
    • Export Citation
  • Scott, A., and et al. , 2017: Temperature and heat in informal settlements in Nairobi. PLOS ONE, 12, e0187300, https://doi.org/10.1371/JOURNAL.PONE.0187300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shandas, V., J. Voelkel, J. Williams, and J. Hoffman, 2019: Integrating satellite and ground measurements for predicting locations of extreme urban heat. Climate, 7, 5, https://doi.org/10.3390/cli7010005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., K. K. Lau, C. Ren, and E. Ng, 2018: Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Climate, 25, 167186, https://doi.org/10.1016/j.uclim.2018.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsin, P. K., A. Knudby, E. S. Krayenhoff, H. C. Ho, M. Brauer, and S. B. Henderson, 2016: Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 5872, https://doi.org/10.1016/j.uclim.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, J., Z. Sümeghy, and J. Zoboki, 2001: Temperature cross-section features in an urban area. Atmos. Res., 58, 117127, https://doi.org/10.1016/S0169-8095(01)00087-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venter, Z., O. Brousse, I. Esau, and F. Meier, 2020: Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. Environ., 242, 111791, https://doi.org/10.1016/j.rse.2020.111791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voelkel, J., and V. Shandas, 2017: Towards systematic prediction of urban heat islands: Grounding measurements, assessing modeling techniques. Climate, 5, 41, https://doi.org/10.3390/cli5020041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, https://doi.org/10.1016/S0034-4257(03)00079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., S. Jiang, J. Wang, C. Zhou, X. Wang, and X. Lee, 2018: Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. J. Geophys. Res. Atmos., 122, 21312154, https://doi.org/10.1002/2016JD025304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, E. L., D. T. Young, L. Chapman, C. Muller, C. S. B. Grimmond, and X. M. Cai, 2016: The Birmingham Urban Climate Laboratory—A high density, urban meteorological dataset, from 2012-2014. Sci. Data, 3, 160038, https://doi.org/10.1038/sdata.2016.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO Rep. 8, 716 pp., http://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf.

  • Yan, H., S. Fan, C. Guo, F. Wu, N. Zhang, and L. Dong, 2014: Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Build. Environ., 76, 4453, https://doi.org/10.1016/j.buildenv.2014.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., F. Wu, and L. Dong, 2018: Influence of a large urban park on the local urban thermal environment. Sci. Total Environ., 622–623, 882891, https://doi.org/10.1016/j.scitotenv.2017.11.327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and E. Bou-Zeid, 2019: Designing sensor networks to resolve spatio-temporal urban temperature variations: Fixed, mobile or hybrid? Environ. Res. Lett., 14, 074022, https://doi.org/10.1088/1748-9326/ab25f8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, H., R. Ooka, and H. Kikumoto, 2018: Study of mobile measurements for detailed temperature distribution in a high-density urban area in Tokyo. Urban Climate, 24, 517528, https://doi.org/10.1016/j.uclim.2017.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, D. T., L. Chapman, C. L. Muller, and X. Cai, 2014: A low-cost wireless temperature sensor: Evaluation for use in environmental monitoring applications. J. Atmos. Oceanic Technol., 31, 938944, https://doi.org/10.1175/JTECH-D-13-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, and N. Schultz, 2017: A wedge strategy for mitigation of urban warming in future climate scenarios. Atmos. Chem. Phys., 17, 90679080, https://doi.org/10.5194/acp-17-9067-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., and et al. , 2019: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens., 11, 48, https://doi.org/10.3390/rs11010048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziter, C. D., E. J. Pedersen, C. J. Kucharik, and M. G. Turner, 2019: Scale-dependent interactions between tree canopy cover and impervious surface reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA, 116, 75757580, https://doi.org/10.1073/pnas.1817561116.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 295 295 42
Full Text Views 33 33 8
PDF Downloads 44 44 9

Performance Evaluation of a Smart Mobile Air Temperature and Humidity Sensor for Characterizing Intracity Thermal Environment

View More View Less
  • 1 a Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
  • | 2 b Jiangsu Key Laboratory of Agriculture Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
  • | 3 c School of the Environment, Yale University, New Haven, Connecticut
  • | 4 d Jiangsu Radio Scientific Institute, Co., Ltd., Wuxi, China
  • | 5 e Jiangsu Climate Center Nanjing, China
© Get Permissions
Restricted access

Abstract

Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Corresponding author: Xuhui Lee, xuhui.lee@yale.edu

Abstract

Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Corresponding author: Xuhui Lee, xuhui.lee@yale.edu
Save