• Alpers, W., and C. Bruning, 1986: On the relative importance of motion-related contributions to the SAR imaging mechanism of ocean surface waves. IEEE Trans. Geosci. Remote Sens., GE-24, 873885, https://doi.org/10.1109/TGRS.1986.289702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpers, W., D. B. Ross, and C. L. Rufenach, 1981: On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res., 86, 64816498, https://doi.org/10.1029/JC086iC07p06481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., A. V. Babanin, D. Resio, and V. E. Zakharov, 2007: Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591, 339378, https://doi.org/10.1017/S0022112007008282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruck, M., and S. Lehner, 2013: Coastal wave field extraction using TerraSAR-X data. J. Appl. Remote Sens., 7, 073694, https://doi.org/10.1117/1.JRS.7.073694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruck, M., and S. Lehner, 2015: TerraSAR-X/TanDEM-X sea state measurements using the XWAVE algorithm. Int. J. Remote Sens., 36, 38903912, https://doi.org/10.1080/01431161.2015.1051630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckreuss, S., and B. Schattler, 2010: The TerraSAR-X ground segment. IEEE Trans. Geosci. Remote Sens., 48, 623632, https://doi.org/10.1109/TGRS.2009.2031432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corcione, V., F. Nunziata, and M. Migliaccio, 2018: Megi typhoon monitoring by X-band synthetic aperture radar measurements. IEEE J. Oceanic Eng., 43, 184194, https://doi.org/10.1109/JOE.2017.2700558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corcione, V., G. Grieco, M. Portabella, F. Nunziata, and M. Migliaccio, 2019: A novel Azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens., 57, 33313340, https://doi.org/10.1109/TGRS.2018.2883364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz Méndez, G. M., S. Lehner, F. J. Ocampo-Torres, X. M. Li, and S. Brusch, 2010: Wind and wave observations off the South Pacific coast of Mexico using TerraSAR-X imagery. Int. J. Remote Sens., 31, 49334955, https://doi.org/10.1080/01431161.2010.485217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and S. Hasselmann, 1991: On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum. J. Geophys. Res., 96, 10 71310 729, https://doi.org/10.1029/91JC00302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2010: Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Oceanic Technol., 27, 721736, https://doi.org/10.1175/2009JTECHO698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., A. Stoffelen, and S. de Haan, 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, https://doi.org/10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Hu, Y. Y., W. Z. Shao, J. Shi, J. Sun, Q. Y. Ji, and L. N. Cai, 2020: Analysis of the typhoon wave distribution simulated in WAVEWATCH-III model in the context of Kuroshio and wind-induced current. J. Oceanol. Limnol, https://doi.org/10.1007/s00343-019-9133-6, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2006: Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, https://doi.org/10.1029/2005JC003180.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air–sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, https://doi.org/10.1175/JPO-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326, https://doi.org/10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., B. Zhang, and W. Perrie, 2010a: Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophys. Res. Lett., 37, L01604, https://doi.org/10.1029/2009GL041780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., B. Zhang, J. Toporkov, and W. Perrie, 2010b: Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res., 115, 246255, https://doi.org/10.1029/2010JC006653.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., X. F. Li, and B. Zhang, 2017: Retrieving hurricane wind speed from dominant wave parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 25892598, https://doi.org/10.1109/JSTARS.2017.2650410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. M., and S. Lehner, 2014: Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data. IEEE Trans. Geosci. Remote Sens., 52, 29282939, https://doi.org/10.1109/TGRS.2013.2267780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. M., S. Lehner, and T. Bruns, 2011: Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans. Geosci. Remote Sens., 49, 115174, https://doi.org/10.1109/TGRS.2010.2052364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. X., A. V. Babanin, S. Zieger, I. R. Young, and C. L. Guan, 2016: Wind and wave climate in the Arctic Ocean as observed by altimeters. J. Climate, 29, 79577975, https://doi.org/10.1175/JCLI-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondon, E., and P. Warner, 2009: Synthesis of a validated nearshore operational wave database using the archived NOAA Wave Watch III ocean model data and SWAN nearshore model. J. Coastal Res., 45, 10151019.

    • Search Google Scholar
    • Export Citation
  • Pleskachevsky, A. L., W. Rosenthal, and S. Lehner, 2016: Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS J. Photogramm. Remote Sens., 119, 464484, https://doi.org/10.1016/j.isprsjprs.2016.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., A. Bentamy, T. Elfouhaily, K. Katsaros, and J. Tournadre, 1998: Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res., 103, 77677786, https://doi.org/10.1029/97JC01911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., S. Lehner, S. Brusch, X. Li, and M. He, 2012: An algorithm for the retrieval of sea surface wind fields using X-band TerraSAR-X data. Int. J. Remote Sens., 33, 73107336, https://doi.org/10.1080/01431161.2012.685977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., X. M. Li, and G. Zhou, 2015: Sea surface wind retrievals from SIR-C/X-SAR data: A revisit. Remote Sens., 7, 35483564, https://doi.org/10.3390/rs70403548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romeiser, R., H. C. Graber, M. J. Caruso, R. E. Jensen, D. T. Walker, and A. T. Cox, 2015: A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Trans. Geosci. Remote Sens., 53, 13201345, https://doi.org/10.1109/TGRS.2014.2337663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz-Stellenfleth, J., T. Konig, and S. Lehner, 2007: An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res., 112, C03019, https://doi.org/10.1029/2006JC003970.

    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., X. M. Li, S. Lehner, and C. L. Guan, 2014: Development of polarization ratio model for sea surface wind field retrieval from TerraSAR-X HH polarization data. Int. J. Remote Sens., 35, 40464063, https://doi.org/10.1080/01431161.2014.916059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., X. F. Li, and J. Sun, 2015: Ocean wave parameters retrieval from TerraSAR-X images validated against buoy measurements and model results. Remote Sens., 7, 12 81512 828, https://doi.org/10.3390/rs71012815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., Z. Zhang, X. M. Li, and W. L. Wang, 2016: Sea surface wind speed retrieval from TerraSAR-X HH polarization data using an improved polarization ratio model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 49914997, https://doi.org/10.1109/JSTARS.2016.2590475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., J. Wang, X. F. Li, and J. Sun, 2017a: An empirical algorithm for wave retrieval from co-polarization X-band SAR imagery. Remote Sens., 9, 711, https://doi.org/10.3390/rs9070711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., X. F. Li, P. A. Hwang, B. Zhang, and X. F. Yang, 2017b: Bridging the gap between cyclone wind and wave by C-band SAR measurements. J. Geophys. Res. Oceans, 122, 67146724, https://doi.org/10.1002/2017JC012908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., Y. Y. Hu, J. S. Yang, F. Nunziata, J. Sun, H. Li, and J. C. Zuo, 2018a: An empirical algorithm to retrieve significant wave height from Sentinel-1 synthetic aperture radar imagery collected under cyclonic conditions. Remote Sens., 10, 1367, https://doi.org/10.3390/rs10091367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, W. Z., Y. X. Sheng, H. Li, J. Shi, Q. Y. Ji, W. Tan, and J. C. Zuo, 2018b: Analysis of wave distribution simulated by WAVEWATCH-III model in typhoons passing Beibu Gulf, China. Atmosphere, 9, 265, https://doi.org/10.3390/atmos9070265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, Y. X., W. Z. Shao, S. Q. Li, Y. M. Zhang, H. W. Yang, and J. C. Zuo, 2019: Evaluation of typhoon waves simulated by WAVEWATCH-III model in shallow waters around Zhoushan Islands. J. Ocean Univ. China, 18, 365375, https://doi.org/10.1007/s11802-019-3829-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and D. Anderson, 1997: Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102, 57675780, https://doi.org/10.1029/96JC02860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., J. Verspeek, J. Vogelzang, and A. Verhoef, 2017: The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 21232134, https://doi.org/10.1109/JSTARS.2017.2681806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., F. Ardhuin, F. Collard, and B. Chapron, 2015: Estimating wave orbital velocities through the azimuth cut-off from space borne satellites. J. Geophys. Res. Oceans, 120, 76167634, https://doi.org/10.1002/2015JC011275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., J. Horstmann, A. A. Mouche, N. S. Winstead, R. Sterner, and F. M. Monaldo, 2012: Comparison of high-resolution wind fields extracted from TerraSAR-X SAR imagery with predictions from the WRF mesoscale model. J. Geophys. Res., 117, C02035, https://doi.org/10.1029/2011JC007526.

    • Search Google Scholar
    • Export Citation
  • van Zadelhoff, G. J., A. Stoffelen, P. W. Vachon, J. Wolfe, J. Horstmann, and M. Belmonte Rivas, 2014: Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos. Meas. Tech., 7, 437449, https://doi.org/10.5194/amt-7-437-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voronovich, A., and V. Zavorotny, 2014: Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface. IEEE Trans. Antennas Propag., 62, 13621371, https://doi.org/10.1109/TAP.2013.2295235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, https://doi.org/10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind waves. Geophys. Res. Lett., 111, C08020, https://doi.org/10.1029/2006JC003540.

  • Zhang, B., and W. Perrie, 2012: Cross-polarized synthetic aperture radar: A new potential technique for hurricanes. Bull. Amer. Meteor. Soc., 93, 531541, https://doi.org/10.1175/BAMS-D-11-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, K. W., J. Sun, C. L. Guan, and W. Z. Shao, 2016: Analysis of the global swell and wind-sea energy distribution using WAVEWATCH III. Adv. Meteor., 2016, 8419580, https://doi.org/10.1155/2016/8419580.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 14
Full Text Views 22 22 2
PDF Downloads 23 23 3

Cyclone Wind Retrieval Based on X-Band SAR-Derived Wave Parameter Estimation

View More View Less
  • 1 a Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
  • | 2 b Electromagnetic Fields, Università degli Studi di Napoli Parthenope, Naples, Italy
  • | 3 c Aerospace Information Research Institute, Chinese Academy of Science, Beijing, China
  • | 4 d National Satellite Ocean Application Service, Beijing, China
© Get Permissions
Restricted access

Abstract

In this study, a method for retrieving wind speed from synthetic aperture radar (SAR) imagery collected under extreme weather conditions is proposed. The rationale for this approach relies on the fact that, although copolarized channels exhibit saturation for wind speed >~20 m s−1, the wave growth can be successfully exploited to gather information on wind speed under extreme weather conditions. Hence, in this study, the intrinsic relationship among the wind-wave triplets [wind speed at 10 m above the sea surface, significant wave height (SWH), and peak wave period] is exploited in order to retrieve wind speeds under tropical cyclone conditions. Experiments, undertaken on actual X-band TerraSAR-X (TS-X) SAR images of tropical cyclones (Typhoon Megi, Hurricane Sandy, and Hurricane Miriam) and using collocated WAVEWATCH-III (WW3) simulations, revealed the robustness of the proposed approach, which resulted in a root-mean-square error (RMSE) of 2.54 m s−1 when comparing the retrieved wind speeds with the values from products delivered by the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD). However, the applicability of the algorithm herein will be further confirmed at very strong storms.

Corresponding author: Weizeng Shao, shaoweizeng@mail.tsinghua.edu.cn

Abstract

In this study, a method for retrieving wind speed from synthetic aperture radar (SAR) imagery collected under extreme weather conditions is proposed. The rationale for this approach relies on the fact that, although copolarized channels exhibit saturation for wind speed >~20 m s−1, the wave growth can be successfully exploited to gather information on wind speed under extreme weather conditions. Hence, in this study, the intrinsic relationship among the wind-wave triplets [wind speed at 10 m above the sea surface, significant wave height (SWH), and peak wave period] is exploited in order to retrieve wind speeds under tropical cyclone conditions. Experiments, undertaken on actual X-band TerraSAR-X (TS-X) SAR images of tropical cyclones (Typhoon Megi, Hurricane Sandy, and Hurricane Miriam) and using collocated WAVEWATCH-III (WW3) simulations, revealed the robustness of the proposed approach, which resulted in a root-mean-square error (RMSE) of 2.54 m s−1 when comparing the retrieved wind speeds with the values from products delivered by the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD). However, the applicability of the algorithm herein will be further confirmed at very strong storms.

Corresponding author: Weizeng Shao, shaoweizeng@mail.tsinghua.edu.cn
Save