• Bender, M. A., I. Ginis, R. E. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N. S. Heaps, Ed., Coastal and Estuarine Studies Series, Vol. 4, Amer. Geophys. Union, 116.

    • Crossref
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. Park and L. Xu, Eds., Vol. II, Springer, 303343 pp.

    • Crossref
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, https://doi.org/10.1029/94JC01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., G. J. Holland, and R. L. Elsberry, 1991: Interactions between a barotropic vortex and an idealized subtropical ridge. Part I: Vortex motion. J. Atmos. Sci., 48, 301314, https://doi.org/10.1175/1520-0469(1991)048<0301:IBABVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and M. Leslie, 1989: Estimates of cyclone track predictability. I: Tropical cyclones in the Australian region. Quart. J. Roy. Meteor. Soc., 115, 7992, https://doi.org/10.1002/qj.49711548505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., 2001: An adaptive multigrid barotropic tropical cyclone track model. Mon. Wea. Rev., 129, 138151, https://doi.org/10.1175/1520-0493(2001)129<0138:AAMBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, J. S., C. T. Fong, L. F. Hsiao, Y. C. Yu, and C. Y. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217237, https://doi.org/10.1175/WAF-D-14-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L. F., M. S. Peng, D. S. Chen, K. N. Huang, and T. C. Yeh, 2009: Sensitivity of typhoon track predictions in a regional prediction system to initial and lateral boundary conditions. J. Appl. Meteor. Climatol., 48, 19131928, https://doi.org/10.1175/2009JAMC2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., C. T. Lu, and J. Lu, 2010: Statistical characteristics of typhoons affecting China coast and numerical simulation of typhoon waves (in Chinese). J. Waterw. Harbor, 31, 433436.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and B. Lynn, 2011: Simulation of tropical cyclones using spectral bin microphysics. Recent Hurricane Research—Climate, Dynamics, and Societal Impacts, A. Lupo, Ed., Intech Open, 197226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Z. J., S. Hao, S. Q. Peng, B. Liu, X. Q. Gu, and Y. K. Qian, 2014: On improving tropical cyclone track forecasts using a scale-selective data assimilation approach: A case study. Nat. Hazards, 73, 13531368, https://doi.org/10.1007/s11069-014-1155-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., J. F. LeMarshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 12481258, https://doi.org/10.1175/1520-0493(1998)126<1248:IHTFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z. J., Y. Chao, J. C. McWilliams, and K. Ide, 2008a: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System: Implementation and basic experiments. J. Geophys. Res., 113, C05002, https://doi.org/10.1029/2008JC004928.

    • Search Google Scholar
    • Export Citation
  • Li, Z. J., Y. Chao, J. C. McWilliams, and K. Ide, 2008b: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System. J. Atmos. Ocean. Tech., 25, 20742090, https://doi.org/10.1175/2008JTECHO594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., S. Z. Lu, Y. K. Qian, and S. Q. Peng, 2014: An application of ATOVS radiance in data assimilation of typhoon (in Chinese). J. Trop. Oceanogr., 31, 4453.

    • Search Google Scholar
    • Export Citation
  • Liu, D. F., L. Pang, and B. T. Xie, 2009: Typhoon disaster in China: Prediction, prevention, and mitigation. Nat. Hazards, 49, 421436, https://doi.org/10.1007/s11069-008-9262-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Q., and D. Barker, 2006: Radiance assimilation in WRF-Var: Implementation and initial results. Seventh WRF User’s Workshop, Boulder, CO, DTC, 4.2.

  • Marks, K. M., and W. H. F. Smith, 2006: An evaluation of publicity available global bathymetry grids. Mar. Geophys. Res., 27, 1934, https://doi.org/10.1007/s11001-005-2095-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1979: A guide to Atlantic and eastern Pacific models for the prediction of tropical cyclone motion. NOAA Tech. Memo. NWS 93226 pp.

  • Peng, S. Q., L. Xie, B. Liu, and F. Semazzi, 2010: Application of scale-selective data assimilation to regional climate modeling and prediction. Mon. Wea. Rev., 138, 13071318, https://doi.org/10.1175/2009MWR2974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S. Q., and et al. , 2014: On the mechanisms of the recurvature of Super Typhoon Megi. Sci. Rep., 4, 4451, https://doi.org/10.1038/srep04451.

  • Peng, S. Q., and et al. , 2015: A real-time regional forecasting system in the South China Sea and its performance in the track forecasts of tropical cyclones during 2011–2013. Wea. Forecasting, 30, 471485, https://doi.org/10.1175/WAF-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S. Q., X. Z. Zeng, and Z. J. Li, 2016: A three-dimensional variational data assimilation system for the South China Sea: Preliminary results from observing system simulation experiments. Ocean Dyn., 66, 737750, https://doi.org/10.1007/s10236-016-0946-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plu, M., 2011: A new assessment of the predictability of tropical cyclone tracks. Mon. Wea. Rev., 139, 36003608, https://doi.org/10.1175/2011MWR3627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radford, A. M., 1994: Forecasting the movement of tropical cyclones at the Met. Office. Meteor. Appl., 1, 355363, https://doi.org/10.1002/met.5060010406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, D. V. B., and D. H. Prasad, 2007: Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat. Hazards, 41, 429445, https://doi.org/10.1007/s11069-006-9052-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1948: On displacement and intensity changes of atmospheric vortices. J. Mar. Res., 7, 175196.

  • Roy, C., and K. Rita, 2012: Tropical cyclone track forecasting techniques—A review. Atmos. Res., 104–105, 4069, https://doi.org/10.1016/J.ATMOSRES.2011.09.012w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1997:A new global wave forecast system at NECP. Ocean Wave Measurements and Analysis, B. L. Edge and J. M. Helmsley, Eds., Vol. 2, ASCE, 777786.

  • Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA Tech. Note 166, 110 pp.

  • Tolman, H. L., 2002:User manual and system documentation of WAVEWATCH-III version 2.22. NOAA Tech. Note 222, 133 pp.

  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS Coupler user’s guide: Version 2.4. CERFACS Tech. Rep. TR/CGMC/00-10, 85 pp.

  • Wang, A. M., 2013: Typhoon wave assimilation model establishment and South China Sea typhoon wave characteristics under the background of winter monsoon. M.S. thesis, Institute of Oceanology, Chinese Academy of Sciences, 63 pp.

  • Wang, B., R. L. Elsberry, Y. Q. Wang, and L. G. Wu, 1998: Dynamics in tropical cyclone motion: A review. Chin. J. Atmos. Sci., 22, 416434.

    • Search Google Scholar
    • Export Citation
  • Wang, J. B., and W. H. Qian, 2005: Statistic analysis of tropical cyclone impact on the China mainland during the last half century. Chin. J. Geophys., 48, 10691077, https://doi.org/10.1002/cjg2.750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and Y. H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L. G., B. Wang, and S. A. Braun, 2005: Impacts of air–sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 32993314, https://doi.org/10.1175/MWR3030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., B. Liu, and S. Q. Peng, 2010: Application of scale-selective data assimilation to tropical cyclone track simulation. J. Geophys. Res., 115, D17105, https://doi.org/10.1029/2009JD013471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., W. Zhu, and S. Q. Peng, 2013: The impacts of different micro-physics schemes and boundary layer schemes on the simulated track and intensity of Super Typhoon Megi (2013) (in Chinese). J. Trop. Meteor., 28, 599608.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 17
Full Text Views 35 35 6
PDF Downloads 41 41 7

The Track and Accompanying Sea Wave Forecasts of the Supertyphoon Mangkhut (2018) by a Real-Time Regional Forecast System

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
  • | 3 Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
  • | 4 Key Laboratory of Science and Technology on Operational Oceanography, Chinese Academy of Sciences, Guangzhou, China
  • | 5 Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
© Get Permissions
Restricted access

Abstract

The track and accompanying sea wave forecasts of Typhoon Mangkhut (2018) by a real-time regional forecasting system are assessed in this study. The real-time regional forecasting system shows a good track forecast skill with a mean error of 69.9 km for the forecast period of 1–72 h. In particular, it predicted well the landfall location on the coastal island of South China with distance (time) biases of 76.89 km (3 h) averaging over all forecasting made during 1–72 h and only 3.55 km (1 h) for the forecasting initialized 27 h ahead of the landfall. The sea waves induced by Mangkhut (2018) were also predicted well by the wave model of the forecasting system with a mean error of 0.54 m and a mean correlation coefficient up to 0.94 for significant wave height. Results from sensitivity experiments show that the improvement of track forecasting skill for Mangkhut (2018) are mainly attributed to application of a scale-selective data assimilation scheme in the atmosphere model that helps to maintain a more realistic large-scale flow obtained from the GFS forecasts, whereas the air–sea coupling has slightly negative impact on the track forecast skill.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shiqiu Peng, speng@scsio.ac.cn

Abstract

The track and accompanying sea wave forecasts of Typhoon Mangkhut (2018) by a real-time regional forecasting system are assessed in this study. The real-time regional forecasting system shows a good track forecast skill with a mean error of 69.9 km for the forecast period of 1–72 h. In particular, it predicted well the landfall location on the coastal island of South China with distance (time) biases of 76.89 km (3 h) averaging over all forecasting made during 1–72 h and only 3.55 km (1 h) for the forecasting initialized 27 h ahead of the landfall. The sea waves induced by Mangkhut (2018) were also predicted well by the wave model of the forecasting system with a mean error of 0.54 m and a mean correlation coefficient up to 0.94 for significant wave height. Results from sensitivity experiments show that the improvement of track forecasting skill for Mangkhut (2018) are mainly attributed to application of a scale-selective data assimilation scheme in the atmosphere model that helps to maintain a more realistic large-scale flow obtained from the GFS forecasts, whereas the air–sea coupling has slightly negative impact on the track forecast skill.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shiqiu Peng, speng@scsio.ac.cn
Save