• DeMaria, M., M. Mainelli, L. Shay, J. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Han, Y., and et al. , 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos., 118, 12 73412 748, https://doi.org/10.1002/2013JD020344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and et al. , 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and X. Zou, 2017: Bias characterization of CrIS radiances at 399 selected channels with respect to NWP model simulations. Atmos. Res., 196, 164181, https://doi.org/10.1016/j.atmosres.2017.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T., and C. S. Velden, 2007: The advanced Dvorak technique (ADT)—Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T., C. S. Velden, and J. Kossin, 2004: The advanced objective Dvorak technique (AODT): Latest upgrades and future directions. Proc. 26th Hurricane and Tropical Meteorology Conf., Miami, FL, Amer. Meteor. Soc., P1.19, https://ams.confex.com/ams/26HURR/techprogram/paper_75417.htm.

  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Zou, 2016: ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121, 12 63012 646, https://doi.org/10.1002/2016JD025042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Zou, 2018: Capturing size and intensity changes of Hurricanes Irma and Maria (2017) from polar-orbiting satellite microwave radiometers. J. Atmos. Sci., 75, 25092522, https://doi.org/10.1175/JAS-D-17-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Zou, 2019: A comprehensive 4D-Var vortex initialization using a nonhydrostatic axisymmetric TC model with convection accounted for. Tellus, 71A, 1653138, https://doi.org/10.1080/16000870.2019.1653138.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172186, https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and et al. , 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, https://doi.org/10.1175/BAMS-87-9-1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, https://doi.org/10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., X. Zou, X. Wang, S. Yang, and M. D. Goldberg, 2012: Introduction to Suomi National Polar-Orbiting Partnership Advanced Technology Microwave Sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res., 117, D19112, https://doi.org/10.1029/2012JD018144.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A., and C. S. Velden, 2007: MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones. Bull. Amer. Meteor. Soc., 88, 11871196, https://doi.org/10.1175/BAMS-88-8-1187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, https://doi.org/10.1175/2010JAMC2490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., and C. S. Velden, 2016: Advancements in objective multi-satellite tropical cyclone center fixing. J. Appl. Meteor. Climatol., 55, 197212, https://doi.org/10.1175/JAMC-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and X. Tian, 2018: Hurricane warm-core retrievals from AMSU-A and remapped ATMS measurements with rain contamination eliminated. J. Geophys. Res. Atmos., 123, 10 81510 829, https://doi.org/10.1029/2018JD028934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., Y. Wu, and P. S. Ray, 2010: Verification of a high-resolution model forecast using airborne Doppler radar analysis during the rapid intensification of Hurricane Guillermo. J. Appl. Meteor. Climatol., 49, 807820, https://doi.org/10.1175/2009JAMC2182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11 55811 576, https://doi.org/10.1002/2013JD020405.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 107 107 10
Full Text Views 55 55 13
PDF Downloads 79 79 18

Comparison of Tropical Cyclone Center Positions Determined from Satellite Observations at Infrared and Microwave Frequencies

View More View Less
  • 1 Joint Center of Data Assimilation for Research and Application, Nanjing University of Information and Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Determining tropical cyclone (TC) center positions is of interest to many researchers who conduct TC analysis and forecasts. In this study, we develop and apply a TC centering technique to Cross-Track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) observations of brightness temperature and report on an improvement of accuracy by adding a TC spectral analysis to the state of the art [Automated Rotational Center Hurricane Eye Retrieval (ARCHER)], especially for ATMS. We show that the ARCHER TC center-fixing algorithm locates TC centers more successfully based on the infrared channel with center frequency at 703.75 cm−1 (channel 89) of the CrIS than the ATMS channel 22 (183.31 ± 1.0 GHz) due to small-scale features in ATMS channel’s brightness temperature field associated with strong convective clouds. We propose to first apply the ARCHER TC center-fixing algorithm to ATMS channel 4 (51.76 GHz) that is less affected by small-scale convective clouds, and then to perform a set of the azimuthal spectral analysis of the ATMS channel-22 observations with tryout centers within a squared box centered at the ATMS channel-4-determined center. The center that gives the largest symmetric component is the final ATMS-determined center. Compared to the National Hurricane Center best track, the root-mean-square center-fixing errors determined from the two ATMS channels (one single CrIS channel) are 29.9 km (35.8 km) and 28.0 km (30.9 km) for 104 tropical storm and 81 hurricane cases, respectively, in the 2019 hurricane season.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaolei Zou, xzou@nuist.edu.cn

Abstract

Determining tropical cyclone (TC) center positions is of interest to many researchers who conduct TC analysis and forecasts. In this study, we develop and apply a TC centering technique to Cross-Track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) observations of brightness temperature and report on an improvement of accuracy by adding a TC spectral analysis to the state of the art [Automated Rotational Center Hurricane Eye Retrieval (ARCHER)], especially for ATMS. We show that the ARCHER TC center-fixing algorithm locates TC centers more successfully based on the infrared channel with center frequency at 703.75 cm−1 (channel 89) of the CrIS than the ATMS channel 22 (183.31 ± 1.0 GHz) due to small-scale features in ATMS channel’s brightness temperature field associated with strong convective clouds. We propose to first apply the ARCHER TC center-fixing algorithm to ATMS channel 4 (51.76 GHz) that is less affected by small-scale convective clouds, and then to perform a set of the azimuthal spectral analysis of the ATMS channel-22 observations with tryout centers within a squared box centered at the ATMS channel-4-determined center. The center that gives the largest symmetric component is the final ATMS-determined center. Compared to the National Hurricane Center best track, the root-mean-square center-fixing errors determined from the two ATMS channels (one single CrIS channel) are 29.9 km (35.8 km) and 28.0 km (30.9 km) for 104 tropical storm and 81 hurricane cases, respectively, in the 2019 hurricane season.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaolei Zou, xzou@nuist.edu.cn
Save