• Alraddawi, D., and et al. , 2018: Comparison of total water vapor content in the Arctic derived from GNSS, AIRS, MODIS, and SCIAMACHY. Atmos. Meas. Tech., 11, 29492965, https://doi.org/10.5194/amt-11-2949-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astin, I., 1997: A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the Earth’s radiation budget as derived from low Earth orbit satellite instruments because of their incomplete temporal and spatial coverage. Surv. Geophys., 18, 385403, https://doi.org/10.1023/A:1006512715662.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., S. Broberg, E. Manning, and T. Pagano, 2019: Radiometric stability validation of 17 years of AIRS data using sea surface temperatures. Geophys. Res. Lett., 46, 12 50412 510, https://doi.org/10.1029/2019GL085098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., and J. C. Stroeve, 2015: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett., 42, 44394446, https://doi.org/10.1002/2015GL063775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., D. L. Wu, and C.-L. Shie, 2015a: Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. J. Geophys. Res. Atmos., 120, 68656881, https://doi.org/10.1002/2015JD023258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., D. L. Wu, T. Vihma, and J. Susskind, 2015b: Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic. J. Geophys. Res. Atmos., 120, 945963, https://doi.org/10.1002/2014JD021666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., J. N. Lee, J. T. M. Lenaerts, B. Noël, M. R. van den Broeke, and A. W. Nolin, 2017: Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model. J. Geophys. Res. Atmos., 122, 202229, https://doi.org/10.1002/2016JD025674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., T. Vihma, and C.-L. Shie, 2020: Evaporation from the Southern Ocean estimated on the basis of AIRS satellite data. J. Geophys. Res. Atmos., 125, e2019JD030845, https://doi.org/10.1029/2019JD030845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boylan, P., J. Wang, S. A. Cohn, E. Fetzer, E. S. Maddy, and S. Wong, 2015: Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsonde data. J. Geophys. Res. Atmos., 120, 9921007, https://doi.org/10.1002/2014JD022551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and et al. , 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011RG000363.

  • Chahine, M. T., and et al. , 2006: The Atmospheric Infrared Sounder (AIRS): Improving weather forecasting and providing new insights into climate. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, L., G. Gao, Y. Li, Y. Zhang, C. Zhang, Y. Zhang, and G. Feng, 2019: Variations in water vapor from AIRS and MODIS in response to Arctic sea ice change in December 2002–November 2016. IEEE Trans. Geosci. Remote Sens., 57, 73957405, https://doi.org/10.1109/TGRS.2019.2913149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki, 2016: Analysis of the warmest Arctic winter, 2015–2016. Geophys. Res. Lett., 43, 10 80810 816, https://doi.org/10.1002/2016GL071228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, V. T., and et al. , 2012: AIRS/AMSU/HSB version 6: Level 2 performance and testing report. California Institute of Technology Jet Propulsion Laboratory Rep., 197 pp., http://disc.sci.gsfc.nasa.gov/AIRS/documentation/V6_L2_Performance_and_Test_Report.pdf.

  • Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache, 2010: A far-infrared radiative closure study in the Arctic: Application to water vapor. J. Geophys. Res., 115, D17106, https://doi.org/10.1029/2009JD012968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., J. Sedlar, B. H. Kahn, M. Tjernström, E. J. Fetzer, B. Tian, J. Teixeira, and T. S. Pagano, 2016: A decade of spaceborne observations of the Arctic atmosphere. Bull. Amer. Meteor. Soc., 97, 21632176, https://doi.org/10.1175/BAMS-D-14-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, D. R., W. D. Collins, R. Pincus, X. Huang, and X. Chen, 2014: Far-infrared surface emissivity and climate. Proc. Natl. Acad. Sci. USA, 111, 16 29716 302, https://doi.org/10.1073/pnas.1413640111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, https://doi.org/10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and et al. , 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1993: Remote sensing of the atmosphere from satellites using microwave radiometry. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., Wiley, 259–334.

  • Guan, B., D. E. Waliser, J. F. Li, and A. da Silva, 2013: Evaluating the impact of orbital sampling on satellite–climate model comparisons. J. Geophys. Res. Atmos., 118, 355369, https://doi.org/10.1029/2012JD018590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J., and et al. , 2008: The far-infrared Earth. Rev. Geophys., 46, RG4004, https://doi.org/10.1029/2007RG000233.

  • Hearty, T. J., J. N. Lee, D. L. Wu, R. Cullather, J. M. Blaisdell, J. Susskind, and S. M. J. Nowicki, 2018: Intercomparison of surface temperatures from AIRS, MERRA, and MERRA-2 with NOAA and GC-Net weather stations at Summit, Greenland. J. Appl. Meteor. Climatol., 57, 12311245, https://doi.org/10.1175/JAMC-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Chen, D. K. Zhou, and X. Liu, 2016: An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. J. Atmos. Sci., 73, 35413555, https://doi.org/10.1175/JAS-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Chen, M. Flanner, P. Yang, D. Feldman, and C. Kuo, 2018: Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. J. Climate, 31, 37113727, https://doi.org/10.1175/JCLI-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., A. Devasthale, M. Tjernström, A. M. L. Ekman, and T. L’Ecuyer, 2017: Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett., 44, 25272536, https://doi.org/10.1002/2017GL072687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2008: Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount. Atmos. Chem. Phys., 8, 12311248, https://doi.org/10.5194/acp-8-1231-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., X. Huang, G. L. Stephens, W. D. Collins, D. R. Feldman, H. Su, S. Wong, and Q. Yue, 2016: ENSO regulation of far- and mid-infrared contributions to clear-sky OLR. Geophys. Res. Lett., 43, 87518759, https://doi.org/10.1002/2016GL070263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B. H., and S.-Y. Lee, 2003: Coalignment and synchronization of the AIRS instrument suite. IEEE Trans. Geosci. Remote Sens., 41, 343351, https://doi.org/10.1109/TGRS.2002.808246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and et al. , 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., L. D. Fowler, and D. A. Randall, 2002: Flying the TRMM satellite in a general circulation model. J. Geophys. Res., 107, 4281, https://doi.org/10.1029/2001JD000619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubin, D., B. H. Kahn, M. A. Lazzara, P. Rowe, and V. P. Walden, 2015: Variability in AIRS-retrieved cloud amount and thermodynamic phase over West versus East Antarctica influenced by the SAM. Geophys. Res. Lett., 42, 12591267, https://doi.org/10.1002/2014GL062285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., V. T. Dang, B. H. Kahn, E. J. Fetzer, E. M. Manning, M. M. Schreier, and R. A. Frey, 2011: Comparing MODIS and AIRS infrared-based cloud retrievals. J. Appl. Meteor. Climatol., 50, 10571072, https://doi.org/10.1175/2010JAMC2603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • North, G. R., S. S. P. Shen, and R. Upson, 1993: Sampling errors in rainfall estimates by multiple satellites. J. Appl. Meteor., 32, 399410, https://doi.org/10.1175/1520-0450(1993)032<0399:SEIREB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, E. T., Ed., 2017: AIRS/AMSU/HSB version 6 level 2 product user guide. California Institute of Technology Jet Propulsion Laboratory Rep., 148 pp., https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/V6_L2_Product_User_Guide.pdf.

  • Parkinson, C., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, https://doi.org/10.1109/TGRS.2002.808319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Ramírez, D., and et al. , 2019: Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global models and satellite products under clear sky conditions. Atmos. Res., 215, 294304, https://doi.org/10.1016/j.atmosres.2018.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, C. A., X. Chen, Q. Yue, and X. Huang, 2019: The spectral dimension of Arctic outgoing longwave radiation and greenhouse efficiency trends from 2003 to 2016. J. Geophys. Res. Atmos., 124, 84678480, https://doi.org/10.1029/2019JD030428.

    • Search Google Scholar
    • Export Citation
  • Roman, J., R. Knuteson, T. August, T. Hultberg, S. Ackerman, and H. Revercomb, 2016: A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations. J. Geophys. Res. Atmos., 121, 89258948, https://doi.org/10.1002/2016JD024806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and P. Callaghan, 1997: Sampling error in climate properties derived from satellite measurements: Consequences of undersampled diurnal variability. J. Climate, 10, 1836, https://doi.org/10.1175/1520-0442(1997)010<0018:SEICPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, https://doi.org/10.1029/2011JD017421.

    • Search Google Scholar
    • Export Citation
  • Sèze, G., and W. B. Rossow, 1991: Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int. J. Remote Sens., 12, 877920, https://doi.org/10.1080/01431169108929702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., B. H. Kahn, and M. Richardson, 2016: The super greenhouse effect in a changing climate. J. Climate, 29, 54695482, https://doi.org/10.1175/JCLI-D-15-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2020: The emerging technological revolution in Earth observations. Bull. Amer. Meteor. Soc., 101, E274E285, https://doi.org/10.1175/BAMS-D-19-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., G. A. Schmidt, J. N. Lee, and L. Iredell, 2019: Recent global warming as confirmed by AIRS. Environ. Res. Lett., 14, 04403010, https://doi.org/10.1088/1748-9326/aafd4e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., S. Kato, K.-M. Xu, and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res. Atmos., 120, 12 65612 678, https://doi.org/10.1002/2015JD023520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., B. M. Hegyi, R. C. Boeke, and L. N. Boisvert, 2018: On the increasing importance of air-sea exchanges in a thawing Arctic: A review. Atmosphere, 9, 41, https://doi.org/10.3390/atmos9020041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. J. Mlawer, 2010: The Radiative Heating in Underexplored Bands Campaign. Bull. Amer. Meteor. Soc., 91, 911924, https://doi.org/10.1175/2010BAMS2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey, 2012: Twenty-first century Arctic climate change in CCSM4. J. Climate, 25, 26962710, https://doi.org/10.1175/JCLI-D-11-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574, https://doi.org/10.1175/JCLI3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., and B. Lambrigtsen, 2017: AIRS V6 test report supplement: Performance of AIRS+AMSU vs. AIRS-only retrievals. California Institute of Technology Jet Propulsion Laboratory Rep., 109 pp., https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.5_ProductQuality/V6_Test_Report_Supplement_Performance_of_AIRS+AMSU_vs_AIRS-Only_Retrievals.pdf.

All Time Past Year Past 30 Days
Abstract Views 174 174 8
Full Text Views 78 78 4
PDF Downloads 86 86 8

Assessment of Sampling Sufficiency for Low-Cost Satellite Missions: Application to PREFIRE

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will, for the first time, systematically document the far-infrared (15–54 µm) spectral region from space. The environmental sampling characteristics of the PREFIRE CubeSats, defined in terms of surface temperature (Tsfc) and column water vapor (CWV) are evaluated for a range of possible orbit scenarios for both clear-sky and all-sky conditions over a variety of surface types (land, ocean, sea ice, snow, glacier ice) at both poles. Using NASA Aqua’s Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) retrievals to define the climatological ranges of Tsfc and CWV, the fraction of environmental regimes observed by distinct PREFIRE configurations are evaluated. The sampling rates within any single year for two-orbit CubeSat launches spanning both polar regions are ~75% for clear-sky and ~85% for all-sky compared to the AIRS/AMSU climatology. Decreasing mission duration from 12 to 3 months decreases sampling much more (10%–20%) than decreasing the swath width from 15 to 8 footprints (6%–9%). For a single CubeSat launch, a 98° orbital inclination provides slightly better sampling than either 93° or 103°. For a two-orbit CubeSat launch, a combination of 93° + 98° is somewhat preferable to 103° + 98°. Finally, a 50% data loss rate simulated by dropping out every other orbit leads to only a modest 7%–8% reduction in sampling from full data coverage. This statistical analysis demonstrates that low-cost platforms could offer similar coverage as present-day flagship missions for sampling wide-ranging Tsfc and CWV states over polar regions.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian H. Kahn, brian.h.kahn@jpl.nasa.gov

Abstract

The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will, for the first time, systematically document the far-infrared (15–54 µm) spectral region from space. The environmental sampling characteristics of the PREFIRE CubeSats, defined in terms of surface temperature (Tsfc) and column water vapor (CWV) are evaluated for a range of possible orbit scenarios for both clear-sky and all-sky conditions over a variety of surface types (land, ocean, sea ice, snow, glacier ice) at both poles. Using NASA Aqua’s Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) retrievals to define the climatological ranges of Tsfc and CWV, the fraction of environmental regimes observed by distinct PREFIRE configurations are evaluated. The sampling rates within any single year for two-orbit CubeSat launches spanning both polar regions are ~75% for clear-sky and ~85% for all-sky compared to the AIRS/AMSU climatology. Decreasing mission duration from 12 to 3 months decreases sampling much more (10%–20%) than decreasing the swath width from 15 to 8 footprints (6%–9%). For a single CubeSat launch, a 98° orbital inclination provides slightly better sampling than either 93° or 103°. For a two-orbit CubeSat launch, a combination of 93° + 98° is somewhat preferable to 103° + 98°. Finally, a 50% data loss rate simulated by dropping out every other orbit leads to only a modest 7%–8% reduction in sampling from full data coverage. This statistical analysis demonstrates that low-cost platforms could offer similar coverage as present-day flagship missions for sampling wide-ranging Tsfc and CWV states over polar regions.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian H. Kahn, brian.h.kahn@jpl.nasa.gov
Save