• Andres, M., 2016: On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras. Geophys. Res. Lett., 43, 98369842, https://doi.org/10.1002/2016GL069966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baehr, J., J. Hirschi, J.-O. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62, 283312, https://doi.org/10.1357/0022240041446191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boebel, O., R. E. Davis, M. Ollitraut, R. Peterson, P. Richard, C. Schmid, and W. Zenk, 1999: The intermediate depth circulation of the western South Atlantic. Geophys. Res. Lett., 26, 33293332, https://doi.org/10.1029/1999GL002355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T., and et al. , 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 48174842, https://doi.org/10.1175/JCLI-D-15-0801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H., H. Longworth, and S. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, https://doi.org/10.1038/nature04385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31, 17931825, https://doi.org/10.1175/JTECH-D-13-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and et al. , 2016: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., 97, 924933, https://doi.org/10.1175/BAMS-D-15-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., L. Calado, B. M. Castro, M. Cirano, J. A. M. Lima, and A. S. Mascarenhas, 2004: On the baroclinic structure of the Brazil Current–intermediate western boundary current system at 22°–23°S. Geophys. Res. Lett., 31, L14308, https://doi.org/10.1029/2004GL020036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, H. B., A. Cazenave, B. Meyssignac, and M. Ablain, 2017: New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett., 44, 37443751, https://doi.org/10.1002/2017GL073308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., G. Goni, S. Swart, and S. Dong, 2014: Wind forced variability of the Antarctic circumpolar current south of Africa between 1993 and 2010. J. Geophys. Res., 119, 11231145, https://doi.org/10.1002/2013JC008908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., G. Goni, M. Baringer, and D. Volkov, 2018: What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophys. Res. Lett., 45, 13 36713 376, https://doi.org/10.1029/2018GL081183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., S. L. Garzoli, M. O. Baringer, C. S. Meinen, and G. J. Goni, 2009: Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys. Res. Lett., 36, L20606, https://doi.org/10.1029/2009GL039356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., M. Baringer, G. Goni, and S. Garzoli, 2011: Importance of the assimilation of Argo float measurements on the meridional overturning circulation in the South Atlantic. Geophys. Res. Lett., 38, L18603, https://doi.org/10.1029/2011GL048982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., G. Goni, and F. Bringas, 2015: Temporal variability of the South Atlantic meridional overturning circulation between 20°S and 35°S. Geophys. Res. Lett., 42, 76557662, https://doi.org/10.1002/2015GL065603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., M. Baringer, and G. Goni, 2019: Slow down of the Gulf Stream during 1993-2016. Sci. Rep., 9, 6672, https://doi.org/10.1038/s41598-019-42820-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, E., D. Roemmich, and D. Stammer, 2010: Interannual variability in North Pacific heat and freshwater budgets. Deep-Sea Res. II, 57, 11271140, https://doi.org/10.1016/j.dsr2.2010.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flagg, C. N., M. Dunn, D.-P. Wang, H. T. Rossby, and R. L. Benway, 2006: A study of the currents of the outer shelf and upper slope from a decade of shipboard ADCP observations in the Middle Atlantic Bight. J. Geophys. Res., 111, C06003, https://doi.org/10.1029/2005JC003116.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and et al. , 2019: Observing system evaluation based on ocean data assimilation and prediction systems: On-going challenges and a future vision for designing and supporting ocean observational networks. Front. Mar. Sci., 6, 417, https://doi.org/10.3389/fmars.2019.00417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., N. M. Urban, R. Tonkonojenkov, M. Haran, A. Schmittner, and K. Keller, 2010: What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic meridional overturning circulation? J. Geophys. Res., 115, C12006, https://doi.org/10.1029/2010JC006407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., G. Goni, V. Hormann, and R. C. Perez, 2013: Variability of the Atlantic off-equatorial eastward currents during 1993–2010 using a synthetic method. J. Geophys. Res., 118, 30263045, https://doi.org/10.1002/jgrc.20186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., G. Goni, and S. Dong, 2015: An optimal XBT-based monitoring system for the South Atlantic meridional overturning circulation at 34°S. J. Geophys. Res., 120, 161181, https://doi.org/10.1002/2014JC010202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., J. Christophersen, S. Dong, G. Goni, and M. O. Baringer, 2018: An updated estimate of salinity for the Atlantic Ocean sector using temperature–salinity relationships. J. Atmos. Oceanic Technol., 35, 17711784, https://doi.org/10.1175/JTECH-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., M. Cirano, M. M. Mata, and S. Majumder, 2019: Long-term monitoring of the Brazil Current transport at 22°S from XBT and altimetry data: Seasonal, interannual, and extreme variability. J. Geophys. Res., 124, 36453663, https://doi.org/10.1029/2018JC014809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and M. O. Baringer, 2002: Surface currents in the tropical Atlantic across high density XBT line AX08. Geophys. Res. Lett., 29, 2218, https://doi.org/10.1029/2002GL015873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and et al. , 2010: The Ship of Opportunity Program. Proc. OceanObs’09, Venice, Italy, European Space Agency, WPP-306, https://doi.org/10.5270/OceanObs09.cwp.35.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and et al. , 2019: More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future. Front. Mar. Sci., 6, 452, https://doi.org/10.3389/fmars.2019.00452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and et al. , 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4 (2), 20 pp., http://apdrc.soest.hawaii.edu/projects/Argo/data/Documentation/YoMaHa070612.pdf.

  • Locarnini, R. A., and et al. , 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., S. Dong, S. Lee, and G. Goni, 2016: Decadal modulations of interhemispheric global atmospheric circulations and monsoons by the South Atlantic meridional overturning circulation. J. Climate, 29, 18311851, https://doi.org/10.1175/JCLI-D-15-0491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., J. K. Willis, and G. C. Johnson, 2006: Recent cooling in the upper ocean. Geophys. Res. Lett., 33, L18604, https://doi.org/10.1029/2006GL027033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumder, S., M. Goes, P. S. Polito, R. Lumpkin, C. Schmid, and H. Lopez, 2019: Propagating modes of variability and their impact on the western boundary current in the South Atlantic. J. Geophys. Res., 124, 31683185, https://doi.org/10.1029/2018JC014812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and et al. , 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K., R. Coleman, R. Bailey, and P. Sutton, 2008: Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry. J. Geophys. Res., 113, C08039, https://doi.org/10.1029/2007JC004664.

    • Search Google Scholar
    • Export Citation
  • Riser, S., and et al. , 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rykova, T., and P. R. Oke, 2015: Recent freshening of the East Australian Current and its eddies. Geophys. Res. Lett., 42, 93699378, https://doi.org/10.1002/2015GL066050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and et al. , 2019: Ocean climate observing requirements in support of climate research and climate information. Front. Mar. Sci., 6, 444, https://doi.org/10.3389/fmars.2019.00444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388, 563567, https://doi.org/10.1038/41523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, S., S. Speich, I. J. Ansorge, G. J. Goni, S. Gladyshev, and J. R. E. Lutjeharms, 2008: Transport and variability of the Antarctic Circumpolar Current south of Africa. J. Geophys. Res., 113, C09014, https://doi.org/10.1029/2007JC004223.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., and et al. , 2019: Global perspectives on observing ocean boundary current systems. Front. Mar. Sci., 6, 423, https://doi.org/10.3389/fmars.2019.00423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and M. J. Harrison, 2007: An observing system simulation experiment for the Indian Ocean. J. Climate, 20, 33003319, https://doi.org/10.1175/JCLI4147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidard, A., D. L. Anderson, and M. Balmaseda, 2007: Impact of ocean observation systems on ocean analysis and seasonal forecasts. Mon. Wea. Rev., 135, 409429, https://doi.org/10.1175/MWR3310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and G. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, R. Domingues, H. Zhang, and M. Goes, 2019: Interannual sea level variability along the southeastern seaboard of the United States in relation to the gyre-scale heat divergence in the North Atlantic. Geophys. Res. Lett., 46, 74817490, https://doi.org/10.1029/2019GL083596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., M. Á. M. Maqueda, V. M. Roussenov, R. G. Williams, and C. W. Hughes, 2014: Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J. Geophys. Res. Oceans, 119, 89168935, https://doi.org/10.1002/2014JC010520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, P., S. L. Morey, and J. J. O’Brien, 2006: Development of new techniques for assimilating satellite altimetry data into ocean models. FSU Center for Ocean–Atmosphere Prediction Studies Paper, 2 pp., https://www.coaps.fsu.edu/~morey/GoM/08_Yu_Peng_WGNE_2006.pdf.

  • Zilberman, N. V., D. H. Roemmich, S. T. Gille, and J. Gilson, 2018: Estimating the velocity and transport of western boundary current systems: A case study of the East Australian Current near Brisbane. J. Atmos. Oceanic Technol., 35, 13131329, https://doi.org/10.1175/JTECH-D-17-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 157 157 16
Full Text Views 100 100 13
PDF Downloads 116 116 11

The Complementary Value of XBT and Argo Observations to Monitor Ocean Boundary Currents and Meridional Heat and Volume Transports: A Case Study in the Atlantic Ocean

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 2 National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 3 National Oceanic and Atmospheric Administration/National Center for Environmental Information, College Park, Maryland
© Get Permissions
Restricted access

Abstract

This work assesses the value of expendable bathythermograph (XBT) and Argo profiling float observations to monitor the Atlantic Ocean boundary current systems (BCS), meridional overturning circulation (MOC), and meridional heat transport (MHT). Data from six XBT transects and available Argo floats in the Atlantic Ocean for the period from 2000 to 2018 are used to estimate the structure and variability of the BCS, MOC, and MHT, taking into account different temporal and spatial mapping strategies. The comparison of Argo data density along these six XBT transects shows that Argo observations outnumber XBT observations only above mapping scales of 30 days and 3° boxes. The comparison of Argo and XBT data for the Brazil Current and Gulf Stream shows that Argo cannot reproduce the structure and variability of these currents, as it lacks sufficient resolution to resolve the gradients across these narrow jets. For the MHT and MOC, Argo estimates are similar to those produced by XBTs at a coarse mapping resolution of 5° and 30 days. However, at such a coarse resolution the root-mean-square errors calculated for both XBT and Argo estimates relative to a high-resolution baseline are higher than 3 Sv (1 Sv ≡ 106 m3 s−1) and 0.25 PW for the MOC and MHT, respectively, accounting for about 25%–30% of their mean values due to the smoothing of eddy variability along the transects. A key result of this study is that using Argo and XBT data jointly, rather than separately, improves the estimates of MHT, MOC, and BCS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-20-0027.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marlos Goes, marlos.goes@noaa.gov

Abstract

This work assesses the value of expendable bathythermograph (XBT) and Argo profiling float observations to monitor the Atlantic Ocean boundary current systems (BCS), meridional overturning circulation (MOC), and meridional heat transport (MHT). Data from six XBT transects and available Argo floats in the Atlantic Ocean for the period from 2000 to 2018 are used to estimate the structure and variability of the BCS, MOC, and MHT, taking into account different temporal and spatial mapping strategies. The comparison of Argo data density along these six XBT transects shows that Argo observations outnumber XBT observations only above mapping scales of 30 days and 3° boxes. The comparison of Argo and XBT data for the Brazil Current and Gulf Stream shows that Argo cannot reproduce the structure and variability of these currents, as it lacks sufficient resolution to resolve the gradients across these narrow jets. For the MHT and MOC, Argo estimates are similar to those produced by XBTs at a coarse mapping resolution of 5° and 30 days. However, at such a coarse resolution the root-mean-square errors calculated for both XBT and Argo estimates relative to a high-resolution baseline are higher than 3 Sv (1 Sv ≡ 106 m3 s−1) and 0.25 PW for the MOC and MHT, respectively, accounting for about 25%–30% of their mean values due to the smoothing of eddy variability along the transects. A key result of this study is that using Argo and XBT data jointly, rather than separately, improves the estimates of MHT, MOC, and BCS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-20-0027.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marlos Goes, marlos.goes@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 372 KB)
Save