• Barnston, A. G., and Coauthors, 1994: Long-lead seasonal forecasts—Where do we stand? Bull. Amer. Meteor. Soc., 75, 20972114, https://doi.org/10.1175/1520-0477(1994)075<2097:LLSFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bontempi, G., S. B. Taieb, and Y.-A. Le Borgne, 2012: Machine learning strategies for time series forecasting. European Business Intelligence Summer School, Springer, 6277.

    • Search Google Scholar
    • Export Citation
  • Box, G. E., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, 2015: Time Series Analysis: Forecasting and Control. John Wiley & Sons, 712 pp.

  • Chen, G., Z. Wang, C. Qian, C. Lv, and Y. Han, 2010: Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data. Remote Sens. Environ., 114, 25242535, https://doi.org/10.1016/j.rse.2010.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., S.-P. Xie, Y. Du, J. Wang, X. Chen, and J. Wang, 2016: Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dyn., 46, 31133126, https://doi.org/10.1007/s00382-015-2756-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. R., and P.-S. Chu, 2015: Sea level forecasts and early-warning application: Expanding cooperation in the South Pacific. Bull. Amer. Meteor. Soc., 96, 381386, https://doi.org/10.1175/BAMS-D-14-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., and P. Niller, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, https://doi.org/10.1016/0011-7471(73)90049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, G., H. Fu, X. Zhang, W. Li, X. Wu, X. Wang, and L. Zhang, 2013: A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project. Adv. Atmos. Sci., 30, 16211631, https://doi.org/10.1007/s00376-013-2198-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2004: A primer for EOF analysis of climate data. Department of Meteorology Tech. Rep., 33 pp.

  • Hu, W., R. Wu, and Y. Liu, 2014: Relation of the South China Sea precipitation variability to tropical Indo-Pacific SST anomalies during spring-to-summer transition. J. Climate, 27, 54515467, https://doi.org/10.1175/JCLI-D-14-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. van den Dool, and A. G. Barnston, 1996: Long-lead seasonal temperature prediction using optimal climate normals. J. Climate, 9, 809817, https://doi.org/10.1175/1520-0442(1996)009<0809:LLSTPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imani, M., R.-J. You, and C.-Y. Kuo, 2014: Analysis and prediction of Caspian Sea level pattern anomalies observed by satellite altimetry using autoregressive integrated moving average models. Arab. J. Geosci., 7, 33393348, https://doi.org/10.1007/s12517-013-1048-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. Springer Series in Statistics, Vol. 29, Springer, 487 pp.

  • Kumar, M., A. Kumar, N. Mahanti, C. Mallik, and R. K. Shukla, 2009: Surface flux modelling using ARIMA technique in humid subtropical monsoon area. J. Atmos. Sol.-Terr. Phys., 71, 12931298, https://doi.org/10.1016/j.jastp.2009.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and S. J. Mason, 2001: Forecasts of near-global sea surface temperatures using canonical correlation analysis. J. Climate, 14, 38193833, https://doi.org/10.1175/1520-0442(2001)014<3819:FONGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. E., D. Chapman, N. Henderson, C. Chen, and M. A. Cane, 2016: Multilevel vector autoregressive prediction of sea surface temperature in the north tropical Atlantic Ocean and the Caribbean Sea. Climate Dyn., 47, 95106, https://doi.org/10.1007/s00382-015-2825-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., C. Piecuch, C. Merchant, M.-F. Racault, H. Palanisamy, C. MacIntosh, S. Sathyendranath, and R. Brewin, 2017: Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Integrative Study of the Mean Sea Level and Its Components, Springer, 191219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedzielski, T., and W. Kosek, 2005: Multivariate stochastic prediction of the global mean sea level anomalies based on TOPEX/Poseidon satellite altimetry. Artif. Satell., 40, 185198.

    • Search Google Scholar
    • Export Citation
  • Niedzielski, T., and W. Kosek, 2009: Forecasting sea level anomalies from TOPEX/Poseidon and Jason-1 satellite altimetry. J. Geod., 83, 469476, https://doi.org/10.1007/s00190-008-0254-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J., and K.-D. Suh, 2018: Real-time forecasting of wave heights using EOF–wavelet–neural network hybrid model. Ocean Eng., 150, 4859, https://doi.org/10.1016/j.oceaneng.2017.12.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K., 1901: LIII. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci., 2, 559572, https://doi.org/10.1080/14786440109462720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, R., S. Basu, A. Sarkar, and P. Pal, 2010: Data-adaptive prediction of sea-surface temperature in the Arabian Sea. IEEE Geosci. Remote Sens. Lett., 8, 913, https://doi.org/10.1109/LGRS.2010.2050674.

    • Search Google Scholar
    • Export Citation
  • Taieb, S. B., and G. Bontempi, 2011: Recursive multi-step time series forecasting by perturbing data. 2011 IEEE 11th Int. Conf. on Data Mining, Vancouver, BC, IEEE, 695704.

  • Talley, L. D., 2011: Descriptive Physical Oceanography: An Introduction. Academic Press, 560 pp.

  • Ubilava, D., and C. G. Helmers, 2013: Forecasting ENSO with a smooth transition autoregressive model. Environ. Modell. Software, 40, 181190, https://doi.org/10.1016/j.envsoft.2012.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Li, C. Wang, and Y. Yan, 2012: Interactions among the winter monsoon, ocean eddy and ocean thermal front in the South China Sea. J. Geophys. Res., 117, C08002, https://doi.org/10.1029/2012JC008007.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and A. Leetmaa, 2000: Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett., 27, 27012704, https://doi.org/10.1029/1999GL011107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, W., S. Xie, D. Wang, B. Taguchi, H. Aiki, and H. Sasaki, 2010: Intraseasonal variability in sea surface height over the South China Sea. J. Geophys. Res., 115, C04010, https://doi.org/10.1029/2009JC005647.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 238 0 0
Full Text Views 278 146 19
PDF Downloads 373 166 16

Medium- to Long-Term Forecasts of Sea Surface Height Anomalies Using a Spatiotemporal Empirical Orthogonal Function Method

Yuxin Zhao College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Yuxin Zhao in
Current site
Google Scholar
PubMed
Close
,
Dequan Yang College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Dequan Yang in
Current site
Google Scholar
PubMed
Close
,
Wei Li School of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Chang Liu College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Chang Liu in
Current site
Google Scholar
PubMed
Close
,
Xiong Deng College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Xiong Deng in
Current site
Google Scholar
PubMed
Close
,
Rixu Hao College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Rixu Hao in
Current site
Google Scholar
PubMed
Close
, and
Zhongjie He College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China

Search for other papers by Zhongjie He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A spatiotemporal empirical orthogonal function (STEOF) forecast method is proposed and used in medium- to long-term sea surface height anomaly (SSHA) forecast. This method embeds temporal information in empirical orthogonal function spatial patterns, effectively capturing the evolving spatial distribution of variables and avoiding the typical rapid accumulation of forecast errors. The forecast experiments are carried out for SSHA in the South China Sea to evaluate the proposed model. Experimental results demonstrate that the STEOF forecast method consistently outperforms the autoregressive integrated moving average (ARIMA), optimal climatic normal (OCN), and persistence prediction. The model accurately forecasts the intensity and location of ocean eddies, indicating its great potential for practical applications in medium- to long-term ocean forecasts.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongjie He, hzj@hrbeu.edu.cn

Abstract

A spatiotemporal empirical orthogonal function (STEOF) forecast method is proposed and used in medium- to long-term sea surface height anomaly (SSHA) forecast. This method embeds temporal information in empirical orthogonal function spatial patterns, effectively capturing the evolving spatial distribution of variables and avoiding the typical rapid accumulation of forecast errors. The forecast experiments are carried out for SSHA in the South China Sea to evaluate the proposed model. Experimental results demonstrate that the STEOF forecast method consistently outperforms the autoregressive integrated moving average (ARIMA), optimal climatic normal (OCN), and persistence prediction. The model accurately forecasts the intensity and location of ocean eddies, indicating its great potential for practical applications in medium- to long-term ocean forecasts.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongjie He, hzj@hrbeu.edu.cn
Save