• Barros, A. P., and et al. , 2014: NASA GPM—Ground validation: Integrated Precipitation and Hydrology Experiment 2014. NASA Tech. Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Bick, T., and et al. , 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Quart. J. Roy. Meteor. Soc., 142, 14901504, https://doi.org/10.1002/qj.2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor. Climatol., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369389, https://doi.org/10.1002/qj.49709640903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., G. M. Heymsfield, L. Tian, and S. R. Guimond, 2015: The coplane analysis technique for three-dimensional wind retrieval using the HIWRAP airborne Doppler radar. J. Appl. Meteor. Climatol., 54, 605623, https://doi.org/10.1175/JAMC-D-14-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., G. A. Wick, P. G. Black, and J. Walker, 2018: Sensing Hazards with Operational Unmanned Technology: 2015–2016 campaign summary, final report. NOAA Tech. Memo. OAR-UAS-001, 49 pp., https://doi.org/10.7289/V5/TM-OAR-UAS-001.

    • Crossref
    • Export Citation
  • Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, https://doi.org/10.1175/JTECH-D-13-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagen, M., 1992: On the appearance of a cold front with a narrow rainband in the vicinity of the Alps. Meteor. Atmos. Phys., 48, 231248, https://doi.org/10.1007/BF01029571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, K. G., B. M. V. Doren, P. M. Stepanian, W. M. Hochachka, A. Farnsworth, and J. F. Kelly, 2016: Nocturnally migrating songbirds drift when they can and compensate when they must. Sci. Rep., 6, 21249, https://doi.org/10.1038/srep21249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, Y.-C., B. J.-D. Jou, J. C. L. Chan, and W.-C. Lee, 2019: An observational study of a coastal barrier jet induced by a landfalling typhoon. Mon. Wea. Rev., 147, 45894609, https://doi.org/10.1175/MWR-D-19-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelberlau, F., and J. Mann, 2019: Better turbulence spectra from velocity–azimuth display scanning wind lidar. Atmos. Meas. Tech., 12, 18711888, https://doi.org/10.5194/amt-12-1871-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelberlau, F., and J. Mann, 2020: Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar. Wind Energy Sci., 5, 519541, https://doi.org/10.5194/wes-5-519-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 218–223.

  • Li, L., and G. Heymsfield, 2009: ER-2 X-band radar (EXRAD) for cloud, precipitation and wind measurements. NASA Airborne Instrument Technology Transition Final Rep., 31 pp.

  • Li, L., G. Heymsfield, J. Carswell, D. Schaubert, J. Creticos, and M. Vega, 2008: High-Altitude Imaging Wind and Rain Airborne Radar (HIWRAP). Proc. IEEE Int. Geoscience and Remote Sensing Symp., Boston, MA, IEEE, 354–357, https://doi.org/10.1109/TGRS.2015.2456501.

    • Crossref
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 13671386, https://doi.org/10.1256/003590002320373337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, https://doi.org/10.1175/2008MWR2273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matejka, T., and R. C. Srivastava, 1991: An improved version of the extended velocity–azimuth display analysis of single-Doppler radar data. J. Atmos. Oceanic Technol., 8, 453466, https://doi.org/10.1175/1520-0426(1991)008<0453:AIVOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, S. A., and N. L. Seaman, 2000: Assimilation of NEXRAD-VAD winds in summertime meteorological simulations over the northeastern United States. J. Appl. Meteor., 39, 367383, https://doi.org/10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and F. M. Ralph, 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273, https://doi.org/10.1175/1520-0493(2004)132<0242:MOFAPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and C. A. Mattocks, 2014: Development and evaluation of the second hurricane nature run using the joint OSSE nature run and the WRF Model. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P91, https://ams.confex.com/ams/31Hurr/webprogram/Paper244751.html.

  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF Model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., H. Volkert, C. Werner, A. Dabas, P. Delville, P. Drobinski, P. H. Flamant, and E. Richard, 2003: Determination of airflow across the Alpine ridge by a combination of airborne Doppler lidar, routine radiosounding and numerical simulation. Quart. J. Roy. Meteor. Soc., 129, 715727, https://doi.org/10.1256/qj.02.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43, 356377, https://doi.org/10.1175/1520-0469(1986)043<0356:DRSOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, A. C. Didlake, S. Guimond, and L. Li, 2015: Velocity–azimuth display analysis of Doppler velocity data for HIWRAP. J. Appl. Meteor. Climatol., 54, 17921808, https://doi.org/10.1175/JAMC-D-14-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witschas, B., S. Rahm, A. Dörnbrack, J. Wagner, and M. Rapp, 2017: Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves. J. Atmos. Oceanic Technol., 34, 13711386, https://doi.org/10.1175/JTECH-D-17-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 148 148 9
Full Text Views 93 93 6
PDF Downloads 117 117 5

Reducing Errors in Velocity–Azimuth Display (VAD) Wind and Deformation Retrievals from Airborne Doppler Radars in Convective Environments

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Universities Space Research Association, Columbia, Maryland
  • | 3 University of Maryland, Baltimore County, Baltimore, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The present study describes methods to reduce the uncertainty of velocity–azimuth display (VAD) wind and deformation retrievals from downward-pointing, conically scanning, airborne Doppler radars. These retrievals have important applications in data assimilation and real-time data processing. Several error sources for VAD retrievals are considered here, including violations to the underlying wind field assumptions, Doppler velocity noise, data gaps, temporal variability, and the spatial weighting function of the VAD retrieval. Specific to airborne VAD retrievals, we also consider errors produced due to the radar scans occurring while the instrument platform is in motion. While VAD retrievals are typically performed using data from a single antenna revolution, other strategies for selecting data can be used to reduce retrieval errors. Four such data selection strategies for airborne VAD retrievals are evaluated here with respect to their effects on the errors. These methods are evaluated using the second hurricane nature run numerical simulation, analytic wind fields, and observed Doppler radar radial velocities. The proposed methods are shown to reduce the median absolute error of the VAD wind retrievals, especially in the vicinity of deep convection embedded in stratiform precipitation. The median absolute error due to wind field assumption violations for the along-track and for the across-track wind is reduced from 0.36 to 0.08 m s−1 and from 0.35 to 0.24 m s−1, respectively. Although the study focuses on Doppler radars, the results are equally applicable to conically scanning Doppler lidars as well.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles N. Helms, charles.n.helms@nasa.gov

Abstract

The present study describes methods to reduce the uncertainty of velocity–azimuth display (VAD) wind and deformation retrievals from downward-pointing, conically scanning, airborne Doppler radars. These retrievals have important applications in data assimilation and real-time data processing. Several error sources for VAD retrievals are considered here, including violations to the underlying wind field assumptions, Doppler velocity noise, data gaps, temporal variability, and the spatial weighting function of the VAD retrieval. Specific to airborne VAD retrievals, we also consider errors produced due to the radar scans occurring while the instrument platform is in motion. While VAD retrievals are typically performed using data from a single antenna revolution, other strategies for selecting data can be used to reduce retrieval errors. Four such data selection strategies for airborne VAD retrievals are evaluated here with respect to their effects on the errors. These methods are evaluated using the second hurricane nature run numerical simulation, analytic wind fields, and observed Doppler radar radial velocities. The proposed methods are shown to reduce the median absolute error of the VAD wind retrievals, especially in the vicinity of deep convection embedded in stratiform precipitation. The median absolute error due to wind field assumption violations for the along-track and for the across-track wind is reduced from 0.36 to 0.08 m s−1 and from 0.35 to 0.24 m s−1, respectively. Although the study focuses on Doppler radars, the results are equally applicable to conically scanning Doppler lidars as well.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles N. Helms, charles.n.helms@nasa.gov
Save