• Andra, D. L., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boettcher, J., and F. Nai, 2020: A meteorologist embedded with engineers: Bringing NWS user perspectives to the design of future operational weather radar systems. Proc. 30th Conf. on Weather Analysis and Forecasting, Boston, MA, Amer. Meteor. Soc., 10A.4, https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper367474/AMS2020%20Extended%20Abstract%2010A.4.pdf.

  • Bowden, K. A., P. L. Heinselman, D. M. Kingfield, and R. P. Thomas, 2015: Impacts of phased-array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389404, https://doi.org/10.1175/WAF-D-14-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., K. Hondle, B. Philips, L. Lemon, E. Bass, D. Rude, and D. Andra Jr., 2010: Evaluation of distributed collaborative adaptive sensing for detection of low-level circulations and implications for severe weather operations. Wea. Forecasting, 25, 173189, https://doi.org/10.1175/2009WAF2222233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A. Flickinger, and D. Sirmans, 2005: New WSR-88D volume coverage pattern 12: Results of field tests. Wea. Forecasting, 20, 385393, https://doi.org/10.1175/WAF848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., R. Kelley, R. D. Palmer, Y. Zhang, M. Yeary, and T.-Y. Yu, 2013: PX-1000: A solid-state polarimetric X-band weather radar and time-frequency multiplexed waveform for blind range mitigation. IEEE Trans. Instrum. Meas., 62, 30643072, https://doi.org/10.1109/TIM.2013.2270046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., 2015: Revised multifunction phased array radar (MPAR) network siting analysis. MIT Lincoln Laboratory Project Rep. ATC-425, 86 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/2018-05/Cho_2015_ATC-425.pdf.

  • Chrisman, J. N., 2009: Automated volume scan evaluation and termination (AVSET): A simple technique to achieve faster volume scan updates for the WSR-88D. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.4, http://ams.confex.com/ams/pdfpapers/155324.pdf.

  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, C. D., 2018: Weather radar time series simulation: Improving accuracy and performance. J. Atmos. Oceanic Technol., 35, 21692187, https://doi.org/10.1175/JTECH-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, A. E., J. N. Chrisman, C. A. Ray, S. D. Smith, and M. W. Miller, 2014: New WSR-88D operational techniques: Responding to recent weather events. Proc. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., 5.2, https://ams.confex.com/ams/94Annual/webprogram/Paper241216.html.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed phased array radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044, https://doi.org/10.1175/WAF-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isom, B., and Coauthors, 2013: The atmospheric imaging radar: Simultaneous volumetric observations using a phased array weather radar. J. Atmos. Oceanic Technol., 30, 655675, https://doi.org/10.1175/JTECH-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., and R. J. Doviak, 2016: Evaluation of phase coding to mitigate differential reflectivity bias in polarimetric PAR. IEEE Trans. Geosci. Remote Sens., 54, 431451, https://doi.org/10.1109/TGRS.2015.2459047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., C. Curtis, and S. M. Torres, 2013: Radial-based noise power estimation for weather radars. J. Atmos. Oceanic Technol., 30, 27372753, https://doi.org/10.1175/JTECH-D-13-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffrey, T., 2009: Phased-Array Radar Design—Application of Radar Fundamentals. SciTech Publishing, 341 pp.

  • Junyent, F., V. Chandrasekar, D. McLaughlin, E. Insanic, and N. Bharadwaj, 2010: The CASA integrated project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178, https://doi.org/10.1175/2009JTECHA1296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars. Part I: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, https://doi.org/10.1175/JTECH-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, D. S., P. L. Heinselman, and J. F. Newman, 2010: Strengths and limitations of current radar systems for two stakeholder groups in the Southern Plains. Bull. Amer. Meteor. Soc., 91, 899910, https://doi.org/10.1175/2009BAMS2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, K. H., I. D. Longstaff, and G. D. Callahan, 2004: Super-fast scanning technique for phased array weather radar application. Proc. Inst. Elect. Eng. Radar Sonar Navig., 151, 271279, https://doi.org/10.1049/ip-rsn:20040559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971818, https://doi.org/10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meischner, P., C. Collier, A. Illingworth, J. Joss, and W. Randeu, 1997: Advanced weather radar systems in Europe: The COST 75 action. Bull. Amer. Meteor. Soc., 78, 14111430, https://doi.org/10.1175/1520-0477(1997)078<1411:AWRSIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, and D. S. Zrnić, 2015: A method to increase the scanning rate of phased-array weather radar. IEEE Trans. Geosci. Remote Sens., 53, 56345643, https://doi.org/10.1109/TGRS.2015.2426704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, S., O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung, 2015: Phase-based frame interpolation for video. 2015 IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, IEEE, 1410–1418, https://doi.org/10.1109/CVPR.2015.7298747.

    • Crossref
    • Export Citation
  • Nai, F., J. Boettcher, C. Curtis, D. Schvartzman, and S. Torres, 2020: The impact of elevation sidelobe contamination on radar data quality for operational interpretation. J. Appl. Meteor. Climatol., 59, 707724, https://doi.org/10.1175/JAMC-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., and V. Chandrasekar, 2017: Electronic scan strategy for phased array weather radar using a space–time characterization model. J. Atmos. Oceanic Technol., 34, 921938, https://doi.org/10.1175/JTECH-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2015: Radar functional requirements. NOAA Internal Rep., 58 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NOAA_Radar_Functional_Requirements_Final_Sept%202015.pdf.

  • NWS, 2020: Weather radar follow on plan: Research and risk reduction to inform acquisition decisions. NOAA Rep., 21 pp., https://www.nssl.noaa.gov/publications/mpar_reports/RadarFollowOnPlan_ReporttoCongress_2020June_Final.pdf.

  • Proud, J. L., K. K. Droegemeier, V. T. Wood, and R. A. Brown, 2009: Sampling strategies for tornado and mesocyclone detection using dynamically adaptive Doppler radars: A simulation study. J. Atmos. Oceanic Technol., 26, 492507, https://doi.org/10.1175/2008JTECHA1087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinoso-Rondinel, R., T. Yu, and S. Torres, 2010: Multifunction phased-array radar: Time balance scheduler for adaptive weather sensing. J. Atmos. Oceanic Technol., 27, 18541867, https://doi.org/10.1175/2010JTECHA1420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ROC, 1991: NOAA Next Generation Radar (NEXRAD) level 2 base data. NOAA National Centers for Environmental Information, accessed 26 March 2020, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • ROC, 2007: WSR-88D system specification. WSR-88D Radar Operations Center Rep. OWY55, 164 pp.

  • ROC, 2018: NEXRAD/WSR-88D history. ROC Doc., 12 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NEXRAD.pdf.

  • ROC, 2020: WSR-88D Service Life Extension Program (SLEP). Accessed 15 April 2020, https://www.roc.noaa.gov/WSR88D/SLEP/SLEP.aspx.

  • Sachidananda, M., and D. S. Zrnić, 1999: Systematic phase codes for resolving range overlaid signals in a Doppler weather radar. J. Atmos. Oceanic Technol., 16, 13511363, https://doi.org/10.1175/1520-0426(1999)016<1351:SPCFRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schvartzman, D., and C. D. Curtis, 2019: Signal Processing and Radar Characteristics (SPARC) simulator: A flexible dual-polarization weather-radar signal simulation framework based on preexisting radar-variable data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 135150, https://doi.org/10.1109/JSTARS.2018.2885614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schvartzman, D., S. Torres, and T. Yu, 2017: Weather radar spatiotemporal saliency: A first look at an information theory–based human attention model adapted to reflectivity images. J. Atmos. Oceanic Technol., 34, 137152, https://doi.org/10.1175/JTECH-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and D. Warde, 2014: Ground clutter mitigation for weather radars using the autocorrelation spectral density. J. Atmos. Oceanic Technol., 31, 20492066, https://doi.org/10.1175/JTECH-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Coauthors, 2016: Adaptive-weather-surveillance and multifunction capabilities of the National Weather Radar Testbed phased array radar. Proc. IEEE, 104, 660672, https://doi.org/10.1109/JPROC.2015.2484288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, and H. G. Thomas, 2017: Command and control for multifunction phased array radar. IEEE Trans. Geosci. Remote Sens., 55, 58995912, https://doi.org/10.1109/TGRS.2017.2716935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T.-Y., M. B. Orescanin, C. D. Curtis, D. S. Zrnić, and D. E. Forsyth, 2007: Beam multiplexing using the phased-array weather radar. J. Atmos. Oceanic Technol., 24, 616626, https://doi.org/10.1175/JTECH2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. M. Melnikov, R. J. Doviak, and R. Palmer, 2015: Scanning strategy for the multifunction phased-array radar to satisfy aviation and meteorological needs. IEEE Geosci. Remote Sens. Lett., 12, 12041208, https://doi.org/10.1109/LGRS.2014.2388202.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 16
Full Text Views 34 34 12
PDF Downloads 45 45 12

A Simulation Framework to Support the Design and Evaluation of Adaptive Scanning for Phased-Array Weather Radars

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

We propose a simulation framework that can be used to design and evaluate the performance of adaptive scanning algorithms on different phased-array weather radar designs. The simulator is proposed as tool to 1) compare the performance of different adaptive scanning algorithms on the same weather event, 2) evaluate the performance of a given adaptive scanning algorithm on several weather events, and 3) evaluate the performance of a given adaptive scanning algorithm on a given weather event using different radar designs. We illustrate the capabilities of the proposed framework to design and evaluate the performance of adaptive algorithms aimed at reducing the update time using adaptive scanning. The example concept of operations is based on a fast low-fidelity surveillance scan and a high-fidelity adaptive scan. The flexibility of the proposed simulation framework is tested using two phased-array-radar designs and three complementary adaptive scanning algorithms: focused observations, beam clustering, and dwell tailoring. Based on a significant weather event observed by an operational NEXRAD radar, our experimental results consist of radar data that were simulated as if the same event had been observed by arbitrary combinations of radar systems and adaptive scanning configurations. Results show that simulated fields of radar data capture the main data-quality impacts from the use of adaptive scanning and can be used to obtain quantitative metrics and for qualitative comparison and evaluation by forecasters. That is, the proposed simulator could provide an effective interface with meteorologists and could support the development of concepts of operations that are based on adaptive scanning to meet the evolutionary observational needs of the U.S. National Weather Service.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastián Torres, sebastian.torres@noaa.gov

Abstract

We propose a simulation framework that can be used to design and evaluate the performance of adaptive scanning algorithms on different phased-array weather radar designs. The simulator is proposed as tool to 1) compare the performance of different adaptive scanning algorithms on the same weather event, 2) evaluate the performance of a given adaptive scanning algorithm on several weather events, and 3) evaluate the performance of a given adaptive scanning algorithm on a given weather event using different radar designs. We illustrate the capabilities of the proposed framework to design and evaluate the performance of adaptive algorithms aimed at reducing the update time using adaptive scanning. The example concept of operations is based on a fast low-fidelity surveillance scan and a high-fidelity adaptive scan. The flexibility of the proposed simulation framework is tested using two phased-array-radar designs and three complementary adaptive scanning algorithms: focused observations, beam clustering, and dwell tailoring. Based on a significant weather event observed by an operational NEXRAD radar, our experimental results consist of radar data that were simulated as if the same event had been observed by arbitrary combinations of radar systems and adaptive scanning configurations. Results show that simulated fields of radar data capture the main data-quality impacts from the use of adaptive scanning and can be used to obtain quantitative metrics and for qualitative comparison and evaluation by forecasters. That is, the proposed simulator could provide an effective interface with meteorologists and could support the development of concepts of operations that are based on adaptive scanning to meet the evolutionary observational needs of the U.S. National Weather Service.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastián Torres, sebastian.torres@noaa.gov
Save