• Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 139150.

    • Search Google Scholar
    • Export Citation
  • Alexanderian, A., N. Petra, G. Stadler, and O. Ghattas, 2016: A fast and scalable method for a-optimal design of experiments for infinite-dimensional Bayesian non-linear inverse problems. SIAM J. Sci. Comput., 38, A243A272, https://doi.org/10.1137/140992564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen, 2012: Variability in Atlantic Water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69, 852863, https://doi.org/10.1093/icesjms/fss056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. Du, and J. Bedard, 2018: A new approach for estimating the observation impact in ensemble–variational data assimilation. Mon. Wea. Rev., 146, 447465, https://doi.org/10.1175/MWR-D-17-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, P. M., L. D. Talley, M. R. Mazloff, S. C. Riser, K. Speer, A. R. Gray, and A. Schwartzman, 2018: Observing the ice-covered Weddell Gyre with profiling floats: Position uncertainties and correlation statistics. J. Geophys. Res. Oceans, 123, 83838410, https://doi.org/10.1029/2017JC012990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., M.-L. Timmermanns, J. M. Toole, R. A. Krishfield, and F. T. Thwaites, 2014: Ekman veering, internal waves, and turbulence observed under Arctic sea ice. J. Phys. Oceanogr., 44, 13061328, https://doi.org/10.1175/JPO-D-12-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, B., C. Lee, B. Petrie, R. Moritz, and R. Kwok, 2014: Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr., 44, 12441266, https://doi.org/10.1175/JPO-D-13-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and et al. , 2010: Impact of the Arctic Ocean Atlantic Water layer on Siberian shelf hydrography. J. Geophys. Res., 115, C08010, https://doi.org/10.1029/2009JC006020.

    • Search Google Scholar
    • Export Citation
  • Docquier, D., and et al. , 2019: Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dyn., 53, 49895017, https://doi.org/10.1007/s00382-019-04840-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastwood, S., K. R. Larsen, T. Lavergne, E. Nielsen, and R. Tonboe, 2011: Global sea ice concentration reprocessing product user manual. EUMETSAT Tech. Rep., 38 pp.

  • Fenty, I., and P. Heimbach, 2013: Coupled sea ice–ocean-state estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr., 43, 884904, https://doi.org/10.1175/JPO-D-12-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenty, I., D. Menemenlis, and H. Zhang, 2017: Global coupled sea ice-ocean state estimate. Climate Dyn., 49, 931956, https://doi.org/10.1007/s00382-015-2796-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., and C. Wunsch, 2007: Estimated global hydrographic variability. J. Phys. Oceanogr., 37, 19972008, https://doi.org/10.1175/JPO3072.1.

  • Forget, G., J. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015a: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., D. Ferreira, and X. Liang, 2015b: On the observability of turbulent transport rates by Argo: Supporting evidence from an inversion experiment. Ocean Sci., 11, 839853, https://doi.org/10.5194/os-11-839-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gould, J., and et al. , 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185191, https://doi.org/10.1029/2004EO190002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, A. L. New, M. Roberts, T. Koenigk, and D. Iovino, 2018: Increasing Atlantic ocean heat transport in the latest generation coupled ocean–atmosphere models: The role of air–sea interaction. J. Geophys. Res. Oceans, 123, 86248637, https://doi.org/10.1029/2018JC014387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Hill, and R. Giering, 2005: An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation. Future Gener. Comput. Syst., 21, 13561371, https://doi.org/10.1016/j.future.2004.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879, https://doi.org/10.1016/j.dsr2.2010.10.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, J. P., S. A. Ackerman, Y. Liu, and J. R. Key, 2019: The detection and characterization of Arctic sea ice leads with satellite imagers. Remote Sens., 11, 521, https://doi.org/10.3390/RS11050521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., and et al. , 2007: Water properties and circulation in arctic ocean models. J. Geophys. Res., 112, C04S03, https://doi.org/10.1029/2006JC003642.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., and et al. , 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modell., 100, 141161, https://doi.org/10.1016/j.ocemod.2016.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, N., and et al. , 2015: Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere, 9, 17971817, https://doi.org/10.5194/tc-9-1797-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, T., and et al. , 2018: Arctic mission benefit analysis: Impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance. Cryosphere, 12, 25692594, https://doi.org/10.5194/tc-12-2569-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klatt, O., O. Boebel, and E. Fahrbach, 2007: A profiling float’s sense of ice. J. Atmos. Oceanic Technol., 24, 13011308, https://doi.org/10.1175/JTECH2026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105, https://doi.org/10.1175/2008JTECHO587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/AAE3EC.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and G. Cunningham, 2015: Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. Roy. Soc., 373A, 20140157, https://doi.org/10.1098/rsta.2014.0157.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109, C01009, https://doi.org/10.1029/2003JC001785.

    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., and A. I. Shiklomanov, 2001: Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 106, 33213334, https://doi.org/10.1029/2000JD900444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and et al. , 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Loose, N., 2019: Adjoint modeling and observing system design in the subpolar North Atlantic. Ph.D. thesis, University of Bergen, 294 pp.

  • Loose, N., P. Heimbach, and H. Pillar, 2020: Quantifying dynamical proxy potential through oceanic teleconnections in the North Atlantic. J. Geophys. Res. Oceans, https://doi.org/10.1029/2020JC016112, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melia, N., K. Haines, and E. Hawkins, 2016: Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett., 43, 97209728, https://doi.org/10.1002/2016GL069315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikhalevsky, P., and et al. , 2015: Multipurpose acoustic networks in the integrated Arctic Ocean observing system. Arctic, 68, 1127, https://doi.org/10.14430/arctic4449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murashkin, D., G. Spreen, M. Huntemann, and W. Dierking, 2018: Method for detection of leads from Sentinel-1 SAR images. Ann. Glaciol., 59, 124136, https://doi.org/10.1017/aog.2018.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.

    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., V. Ocanã, V. Garg, P. Heimbach, J. Toole, R. Krishfield, C. Lee, and R. Rainville, 2017: On the benefit of current and future ALPS data for improving Arctic coupled ocean-sea ice state estimation. Oceanography, 30, 6973 , https://doi.org/10.5670/oceanog.2017.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A., and S. Bacon, 2013: Eddy length scales and the Rossby radius in the Arctic Ocean. Ocean Sci. Discuss., 10, 18071831, https://doi.org/10.5194/osd-10-1807-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pnyushkov, A. V., I. V. Polyakov, V. V. Ivanov, and T. Kikuchi, 2013: Structure of the Fram Strait branch of the boundary current in the Eurasian Basin in the Arctic Ocean. Polar Sci., 7, 5371, https://doi.org/10.1016/j.polar.2013.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pnyushkov, A. V., I. V. Polyakov, L. Padman, and A. T. Nguyen, 2018: Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean. Ocean Sci., 14, 13291347, https://doi.org/10.5194/os-14-1329-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, and L. A. Timokhov, 2012: Warming of the intermediate Atlantic Water of the Arctic Ocean in the 2000s. J. Climate, 25, 83628370, https://doi.org/10.1175/JCLI-D-12-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and et al. , 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291, https://doi.org/10.1126/science.aai8204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and et al. , 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Purokoski, T., E. Aro, and A. Nummelin, 2013: First long-term deployment of Argo float in Baltic Sea. Sea Technol., 54, 4144.

  • Riser, S. C., and et al. , 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., D. Swift, and R. Drucker, 2018: Profiling floats in SOCCOM: Technical capabilities for studying the Southern Ocean. J. Geophys. Res. Oceans, 123, 40554073, https://doi.org/10.1002/2017JC013419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2009: The Argo program: Observing the global ocean with profiling floats. Oceangraphy, 22, 3444, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2012: Arctic Ocean circulation and variability–advection and external forcing encounter constraints and local processes. Ocean Sci., 8, 261286, https://doi.org/10.5194/os-8-261-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2015: Arctic Ocean circulation, processes and water masses: A description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009. Prog. Oceanogr., 132, 2267, https://doi.org/10.1016/j.pocean.2013.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Jones, U. Schauer, and P. Eriksson, 2004: Atlantic sources of the arctic ocean surface and halocline waters. Polar Res., 23, 181208, https://doi.org/10.1111/j.1751-8369.2004.tb00007.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauer, U., and E. Fahrbach, 2004: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci., 1436, 3653 , https://doi.org/10.1111/nyas.13856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., T. I. Yakovleva, R. B. Lammers, I. P. Karasev, C. J. Vörösmarty, and E. Linder, 2006: Cold region river discharge uncertainty—Estimates from large Russian rivers. J. Hydrol., 326, 231256, https://doi.org/10.1016/j.jhydrol.2005.10.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., and et al. , 2019: Contributions of GRACE to understanding climate change. Nat. Climate Change, 9, 358369, https://doi.org/10.1038/s41558-019-0456-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, https://doi.org/10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., A. Proshutinsky, R. Krishfield, D. K. Perovich, J. A. Richter-Menge, T. P. Stanton, and J. M. Toole, 2011: Surface freshening in the Arctic Ocean’s Eurasian Basin: An apparent consequence of recent change in the wind-driven circulation. J. Geophys. Res., 116, C00D03, https://doi.org/10.1029/2011JC006975.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., S. Cole, and J. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668, https://doi.org/10.1175/JPO-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, and R. Krishfield, 2018: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv., 4, eaat6773, https://doi.org/10.1126/sciadv.aat6773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and et al. , 2006: Ice-tethered profilers sample the upper Arctic Ocean. Eos, Trans. Amer. Geophys. Union, 87, 434438, https://doi.org/10.1029/2006EO410003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, https://doi.org/10.1029/2009JC005660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. A. Krishfield, and M. L. Timmermans, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, https://doi.org/10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, B. Qiu, D. Menemenlis, J. T. Farrar, Y. Chao, A. F. Thompson, and M. M. Flexas, 2018: An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. J. Atmos. Oceanic Technol., 35, 281297, https://doi.org/10.1175/JTECH-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerlund, A., and L. Tuomi, 2016: Vertical temperature dynamics in the northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats. J. Mar. Syst., 158, 3444, https://doi.org/10.1016/j.jmarsys.2016.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A., and S. Riser, 2011: Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr., 41, 11021115, https://doi.org/10.1175/2011JPO4516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A., and S. Riser, 2013: Modified shelf water on the continental slope north of Mac Robertson Land, East Antarctica. Geophys. Res. Lett., 40, 61866190, https://doi.org/10.1002/2013GL058125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr., 160, 124154, https://doi.org/10.1016/j.pocean.2017.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, https://doi.org/10.1016/j.physd.2006.09.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013a: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate: A 21st Century Perspective, Elsevier Ltd., 553579, https://doi.org/10.1016/B978-0-12-391851-2.00021-0.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013b: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, https://doi.org/10.1175/JCLI-D-12-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., P. Heimbach, R. Ponte, and I. Fukumori, 2009: The global general circulation of the Ocean estimated by the ECCO-consortium. Oceanography, 22, 88103, https://doi.org/10.5670/oceanog.2009.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, and J. Toole, 2016: Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophys. Res. Lett., 43, 81068114, https://doi.org/10.1002/2016GL069671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M., and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 12
Full Text Views 33 33 0
PDF Downloads 42 42 1

Impact of Synthetic Arctic Argo-Type Floats in a Coupled Ocean–Sea Ice State Estimation Framework

View More View Less
  • 1 The University of Texas at Austin, Austin, Texas
  • | 2 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.

Current affiliation: Oden Institute for Computational Engineering and Sciences, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas.

Corresponding author: An T. Nguyen, atnguyen@oden.utexas.edu

Abstract

The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.

Current affiliation: Oden Institute for Computational Engineering and Sciences, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas.

Corresponding author: An T. Nguyen, atnguyen@oden.utexas.edu
Save