• Anupriya, K. R., and T. Sasilatha, 2018: Ship intrusion detection system—A review of the state of the art. Soft Computing Systems: ICSCS 2018, I. Zelinka et al., Eds., Communications in Computer and Information Science, Vol. 837, Springer, 147154, https://doi.org/10.1007/978-981-13-1936-5_17.

    • Crossref
    • Export Citation
  • Benassai, G., V. Piscopo, and A. Scamardella, 2015: Spectral analysis of waves produced by HSC for coastal management. J. Atmos. Oceanic Technol., 20, 417428, https://doi.org/10.1007/S00773-014-0290-1.

    • Search Google Scholar
    • Export Citation
  • BigOceanData, 2019: BigOceanData. Accessed 14 April 2019, http://www.bigoceandata.com/.

  • Bleckmann, H., and R. Zelick, 2009: Lateral line system of fish. Integr. Zool., 4, 1325, https://doi.org/10.1111/j.1749-4877.2008.00131.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 1980: Wave measurement using pressure transducer. Oceanol. Acta, 3, 339346.

  • Chen, P. F., Y. M. Huang, J. M. Mou, and P. H. A. J. M. van Gelder, 2018: Ship collision candidate detection method: A velocity obstacle approach. Ocean Eng., 170, 186198, https://doi.org/10.1016/j.oceaneng.2018.10.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didenkulova, I., A. Sheremet, T. Torsvik, and T. Soomere, 2013: Characteristic properties of different vessel wake signals. J. Coastal Res., 65, 213218, https://doi.org/10.2112/SI65-037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugad, S., V. Puliyadi, H. Palod, N. Johnson, S. Rajput, and S. Johnny, 2016: Ship intrusion detection security system using HoG & SVM. Int. J. Adv. Res. Comput. Eng. Technol., 5, 25042507, http://ijarcet.org/wp-content/uploads/IJARCET-VOL-5-ISSUE-10-2504-2507.pdf.

    • Search Google Scholar
    • Export Citation
  • Estonian Maritime Administration, 2019: Estonian Maritime Administration’s web application Nutimeri. Accessed 3 May 2019, https://gis.vta.ee/nutimeri/.

  • Fang, M. C., R. Y. Yang, and I. V. Shugan, 2011: Kelvin ship wake in the wind waves field and on the finite sea depth. J. Mech., 27, 7177, https://doi.org/10.1017/jmech.2011.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujino, I., C. Claramunt, and A.-O. Boudraa, 2018: Extracting courses of vessels from AIS data and real-time warning against off-course. Proc. Second Int. Conf. on Big Data Research, Weihai, China, Association for Computing Machinery, 6269, https://doi.org/10.1145/3291801.3291823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gierull, C. H., 2019: Demystifying the capability of sublook correlation techniques for vessel detection in SAR imagery. IEEE Trans. Geosci. Remote Sens., 57, 20312042, https://doi.org/10.1109/TGRS.2018.2870716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goda, Y., 2010: Reanalysis of regular and random breaking wave statistics. Coastal Eng. J., 52, 71106, https://doi.org/10.1142/S0578563410002129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., D. Wang, H. Garcia, O. R. Godø, and P. Ratilal, 2017: Continental shelf-scale passive acoustic detection and characterization of diesel-electric ships using a coherent hydrophone array. Remote Sens., 9, 772, https://doi.org/10.3390/rs9080772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karimpour, A., and Q. Chen, 2017: Wind wave analysis in depth limited water using OCEANLYZ, a MATLAB toolbox. Comput. Geosci., 106, 181189, https://doi.org/10.1016/j.cageo.2017.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-Y., and Y.-F. Chiu, 1994: Transfer function between wave height and wave pressure for progressive waves. Coastal Eng., 23, 8193, https://doi.org/10.1016/0378-3839(94)90016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurekin, A. A., B. R. Loveday, O. Clements, G. D. Quartly, P. I. Miller, G. Wiafe, and K. A. Agyekum, 2019: Operational monitoring of illegal fishing in Ghana through exploitation of satellite Earth observation and AIS data. Remote Sens., 11, 293, https://doi.org/10.3390/rs11030293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuznetsov, N. G., V. G. Maz’ya, and B. Vainberg, 2002: Linear Water Waves: A Mathematical Approach. Cambridge University Press, 513 pp.

  • Leppäranta, M., and K. Myrberg, 2009: Physical Oceanography of the Baltic Sea. Springer, 378 pp.

  • Newman, J. N., 1977: Marine Hydrodynamics. MIT Press, 402 pp.

  • Panico, A., M. D. Graziano, and A. Renga, 2017: SAR-based vessel velocity estimation from partially imaged Kelvin pattern. IEEE Geosci. Remote Sens. Lett., 14, 20672071, https://doi.org/10.1109/LGRS.2017.2751083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-J., S. Oh, K.-A. Park, P.-Y. Foucher, J.-C. Jang, M. Lee, T.-S. Kim, and W.-S. Kang, 2018: The ship detection using airborne and in-situ measurements based on hyperspectral remote sensing. J. Korean Earth Sci. Soc., 38, 535545, https://doi.org/10.5467/JKESS.2017.38.7.535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pethiyagoda, R., S. W. McCue, and T. J. Moroney, 2017: Spectrograms of ship wakes: Identifying linear and nonlinear wave signals. J. Fluid Mech., 811, 189209, https://doi.org/10.1017/jfm.2016.753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pethiyagoda, R., T. J. Moroney, G. J. Macfarlane, J. R. Binns, and S. W. McCue, 2018: Time-frequency analysis of ship wave patterns in shallow water: Modelling and experiments. Ocean Eng., 158, 123131, https://doi.org/10.1016/j.oceaneng.2018.01.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabaud, M., and F. Moisy, 2013: Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett., 110, 214503, https://doi.org/10.1103/PhysRevLett.110.214503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renga, A., M. D. Graziano, and A. Moccia, 2019: Segmentation of marine SAR images by sublook analysis and application to sea traffic monitoring. IEEE Trans. Geosci. Remote Sens., 57, 14631477, https://doi.org/10.1109/TGRS.2018.2866934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ristolainen, A., J. A. Tuhtan, A. Kuusik, and M. Kruusmaa, 2016: Hydromast: A bioinspired flow sensor with accelerometer. Biomimetic and Biohybrid Systems, N. Lepora et al., Eds., Lecture Notes in Computer Science, Vol. 9793, Springer, 510517, https://doi.org/10.1007/978-3-319-42417-0_55.

    • Crossref
    • Export Citation
  • Ristolainen, A., J. A. Tuhtan, and M. Kruusmaa, 2019: Continuous, near-bed current velocity estimation using pressure and inertial sensing. IEEE Sens. J., 19, 12 39812 406, https://doi.org/10.1109/jsen.2019.2937954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheremet, A., U. Gravois, and M. Tian, 2013: Boat-wake statistics at Jensen Beach, Florida. J. Waterw. Port Coastal Ocean Eng., 139, 286294, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, G., J. Hoth, P. Banyś, and F. Heymann, 2019: Generic framework for vessel detection and tracking based on distributed marine radar image data. CEAS Space J., 11, 6579, https://doi.org/10.1007/s12567-018-0208-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soomere, T., 2005: Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: A case study in Tallinn Bay, Baltic Sea. Environ. Fluid Mech., 5, 293323, https://doi.org/10.1007/s10652-005-5226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soomere, T., 2007: Nonlinear components of ship wake waves. Appl. Mech. Rev., 60, 120138, https://doi.org/10.1115/1.2730847.

  • Soomere, T., K. E. Parnell, and I. Didenkulova, 2011: Water transport in wake waves from high-speed vessels. J. Mar. Syst., 88, 7481, https://doi.org/10.1016/j.jmarsys.2011.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorensen, R. M., 1973: Ship-generated waves. Adv. Hydrosci., 9, 4983, https://doi.org/10.1016/B978-0-12-021809-7.50007-9.

  • Till, G., 2013: Seapower: A Guide for the Twenty-First Century. Routledge, 432 pp., https://doi.org/10.4324/9780203880487.

  • Torsvik, T., T. Soomere, I. Didenkulova, and A. Sheremet, 2015: Identification of ship wake structures by a time-frequency method. J. Fluid Mech., 765, 229251, https://doi.org/10.1017/jfm.2014.734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehausen, J. V., 1973: The wave resistance of ships. Adv. Appl. Mech., 13, 93245, https://doi.org/10.1016/S0065-2156(08)70144-3.

  • Wyatt, D. C., and R. E. Hall, 1988: Analysis of ship-generated surface waves using a method based upon the local Fourier transform. J. Geophys. Res., 93, 14 13314 164, https://doi.org/10.1029/JC093iC11p14133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., H. Garcia, A. Kaplan, M. Schinault, N. O. Handegard, O. R. Godø, W. Huang, and P. Ratilal, 2018: Detection, localization and classification of multiple mechanized ocean vessels over continental-shelf scale regions with passive ocean acoustic waveguide remote sensing. Remote Sens., 10, 1699, https://doi.org/10.3390/rs10111699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilman, G., A. Zapolski, and M. Marom, 2004: The speed and beam of a ship from its wake’s SAR images. IEEE Trans. Geosci. Remote Sens., 42, 23352343, https://doi.org/10.1109/TGRS.2004.833390.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 55
Full Text Views 20 20 7
PDF Downloads 26 26 10

Using Spectrograms from Underwater Total Pressure Sensors to Detect Passing Vessels in a Coastal Environment

View More View Less
  • 1 Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
  • | 2 Centre for Biorobotics, Department of Computer Systems, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
© Get Permissions
Restricted access

Abstract

Monitoring vessel traffic in coastal regions is a key element of maritime security. For this reason, additional ways of detecting moving vessels are explored by using the unique structure of their wake waves based on pressure measurements at the seabed. The experiments are performed at a distance of about 2 km from the sailing line using novel multisensor devices called “hydromasts” that track both pressure and near-bed water flow current velocities. The main tool for the analysis is a windowed Fourier transform that produces a spectrogram of the wake structure. It is shown that time series from the pressure sensors, measured at a frequency of 100 Hz, 0.2 m above the seabed are a valid source of input data for the spectrogram technique. This technique portrays the properties of both divergent and transverse waves with an accuracy and resolution that is sufficient for the evaluation of the speed and distance of the detected vessels from the measurement device. All the detected passings are matched with vessels using automatic identification system (AIS) data. The use of several time series from synchronized multisensor systems substantially suppresses noise and improves the quality of the outcome compared to one-point measurements. Additional information about variations in the water flow in wakes provides a simple and reasonably accurate tool for rapid detection of ship passages.

Corresponding author: Margus Rätsep, margus.ratsep@ttu.ee

Abstract

Monitoring vessel traffic in coastal regions is a key element of maritime security. For this reason, additional ways of detecting moving vessels are explored by using the unique structure of their wake waves based on pressure measurements at the seabed. The experiments are performed at a distance of about 2 km from the sailing line using novel multisensor devices called “hydromasts” that track both pressure and near-bed water flow current velocities. The main tool for the analysis is a windowed Fourier transform that produces a spectrogram of the wake structure. It is shown that time series from the pressure sensors, measured at a frequency of 100 Hz, 0.2 m above the seabed are a valid source of input data for the spectrogram technique. This technique portrays the properties of both divergent and transverse waves with an accuracy and resolution that is sufficient for the evaluation of the speed and distance of the detected vessels from the measurement device. All the detected passings are matched with vessels using automatic identification system (AIS) data. The use of several time series from synchronized multisensor systems substantially suppresses noise and improves the quality of the outcome compared to one-point measurements. Additional information about variations in the water flow in wakes provides a simple and reasonably accurate tool for rapid detection of ship passages.

Corresponding author: Margus Rätsep, margus.ratsep@ttu.ee
Save