• ANSYS, 2020: 3D electromagnetic field simulator for RF and wireless design. ANSYS, Inc., accessed March 2020, https://www.ansys.com/products/electronics/ansys-hfss/.

  • Auer, A. H., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Caylor, I. J., and V. Chandrasekar, 1996: Time-varying crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847858, https://doi.org/10.1109/36.508402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chobanyan, E., N. J. Šekeljić, A. B. Manić, M. M. Ilic, V. N. Bringi, and B. M. Notaros, 2015: Efficient and accurate computational electromagnetics approach to precipitation particle scattering analysis based on higher-order method of moments integral equation modeling. J. Atmos. Oceanic Technol., 32, 17451758, https://doi.org/10.1175/JTECH-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, https://doi.org/10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, https://doi.org/10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FEKO, 2020: FEKO. Accessed March 2020, http://www.antenna-theory.com/tutorial/feko/feko.php.

  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientation and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E., T. Schuur, and A. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E., T. Schuur, and A. Ryzhkov, 2020: A polarimetric radar analysis of ice microphysical processes in melting layers of winter storms using S-band quasi-vertical profiles. J. Appl. Meteor. Climatol., 59, 751767, https://doi.org/10.1175/JAMC-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendry, A., and G. C. McCormick, 1976: Radar observations of alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res., 81, 53535357, https://doi.org/10.1029/JC081i030p05353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, A. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, https://doi.org/10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, A. R., 1984: Some factors affecting the remote sensing of rain by polarization diversity radar in 3- to 35-GHz frequency range. Radio Sci., 19, 13991412, https://doi.org/10.1029/RS019i005p01399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, S. Rutledge, and M. Dixon, 2014a: Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. J. Appl. Meteor. Climatol., 53, 16591677, https://doi.org/10.1175/JAMC-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, and Y.-C. Liou, 2014b: X-band polarimetric observations of cross coupling in the ice phase of convective storms in Taiwan. J. Appl. Meteor. Climatol., 53, 16781695, https://doi.org/10.1175/JAMC-D-13-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., J. M. Wilson, T. Weckwerth, S. M. Ellis, M. Dixon, and E. Loew, 2018: S-POL’s polarimetric data reveal detailed storm features (and insect behavior). Bull. Amer. Meteor. Soc., 99, 20452060, https://doi.org/10.1175/BAMS-D-17-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishimaru, A., 1991: Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice Hall, 637 pp.

  • Matrosov, S. Y., 2015: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmos. Oceanic Technol., 32, 865879, https://doi.org/10.1175/JTECH-D-14-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., 2017: Parameters of cloud ice particles retrieved from radar data. J. Atmos. Oceanic Technol., 34, 717728, https://doi.org/10.1175/JTECH-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and J. M. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, https://doi.org/10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., D. Zrnić, R. Rabin, and P. Zhang, 2008: Radar polarimetric signatures of fire plumes in Oklahoma. Geophys. Res. Lett., 35, L14815, https://doi.org/10.1029/2008GL034311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., D. Zrnić, and R. Rabin, 2009: Polarimetric radar properties of smoke plumes: A model. J. Geophys. Res., 114, D21204, https://doi.org/10.1029/2009JD012647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 453 pp.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705714, https://doi.org/10.1086/152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, https://doi.org/10.1175/JTECH2034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, https://doi.org/10.1175/JAMC-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, https://doi.org/10.1109/36.285183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., V. Chandrasekar, and V. N. Bringi, 2006: Characterization and evaluation of hybrid polarization observation of precipitation. J. Atmos. Oceanic Technol., 23, 552572, https://doi.org/10.1175/JTECH1869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2014: Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarization radar measurements. Quart. J. Roy. Meteor. Soc., 140, 20902096, https://doi.org/10.1002/qj.2262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WIPL-D, 2020: WIPL-D. Accessed March 2020, https://wipl-d.com.

  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WSR-88D Radar Operations Center, 2018: Interface control document for the RDA/RPG. WSR-88D Radar Operations Center Doc. 2620002R, 135 pp., https://www.roc.noaa.gov/wsr88d/PublicDocs/ICDs/2620002R.pdf.

All Time Past Year Past 30 Days
Abstract Views 45 45 8
Full Text Views 18 18 1
PDF Downloads 24 24 0

Impacts of the Phase Shift between Incident Radar Waves on the Polarization Variables from Ice Cloud Particles

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

ABSTRACT

The impacts of the differential phase of incident radar waves (ψi) on measured differential reflectivity (ZDR), differential phase, and correlation coefficient from ice cloud particles are presented for radars employing simultaneous transmission and reception of orthogonally polarized waves (SHV radar design). The maximal values of ZDR and the differential phase upon scattering (δ) from ice particles are obtained as functions of ψi. It is shown that SHV δ from ice particles can exceed a dozen degrees whereas the intrinsic δ is of a few hundredths of a degree. In melting layers, the δ values from particles obeying the Rayleigh scattering law can be several degrees depending on ψi so that, to explain such δ values, an assumption of resonance scattering is not necessary. The phase δ affects the estimation of specific differential phase (KDP) in icy media and, therefore, the phase δ should be measured. The radar differential phase upon transmission ψt is a part of ψi and, therefore, affects the δ values. A radar capability to alter ψi by varying ψt could deliver additional information about scattering media.

Corresponding author: Valery Melnikov, valery.melnikov@noaa.gov

ABSTRACT

The impacts of the differential phase of incident radar waves (ψi) on measured differential reflectivity (ZDR), differential phase, and correlation coefficient from ice cloud particles are presented for radars employing simultaneous transmission and reception of orthogonally polarized waves (SHV radar design). The maximal values of ZDR and the differential phase upon scattering (δ) from ice particles are obtained as functions of ψi. It is shown that SHV δ from ice particles can exceed a dozen degrees whereas the intrinsic δ is of a few hundredths of a degree. In melting layers, the δ values from particles obeying the Rayleigh scattering law can be several degrees depending on ψi so that, to explain such δ values, an assumption of resonance scattering is not necessary. The phase δ affects the estimation of specific differential phase (KDP) in icy media and, therefore, the phase δ should be measured. The radar differential phase upon transmission ψt is a part of ψi and, therefore, affects the δ values. A radar capability to alter ψi by varying ψt could deliver additional information about scattering media.

Corresponding author: Valery Melnikov, valery.melnikov@noaa.gov
Save