• Abdi, H., 2007: The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics, N. J. Salkind, Ed., Sage, 508–510.

  • Ankerst, M., M. M. Breunig, H.-P. Kriegel, and J. Sander, 1999: OPTICS: Ordering Points to Identify the Clustering Structure. Proc. 1999 SIGMOD Int. Conf. on Management of Data, Philadelphia, PA, Association for Computing Machinery, 49–60, https://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf.

    • Crossref
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conselice, C. J., 1997: The symmetry, color, and morphology of galaxies. Publ. Astron. Soc. Pac., 109, 12511255, https://doi.org/10.1086/134004.

  • Conselice, C. J., M. A. Bershady, and A. Jangren, 2000: The asymmetry of galaxies: Physical morphology for nearby and high-redshift galaxies. Astrophys. J., 529, 886910, https://doi.org/10.1086/308300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., E. A. Ritchie, and J. S. Tyo, 2016: The use of the deviation angle variance technique on geostationary satellite imagery to estimate tropical cyclone size parameters. Wea. Forecasting, 31, 16251642, https://doi.org/10.1175/WAF-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 36, 19 pp., https://repository.library.noaa.gov/view/noaa/18546.

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricane. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, 1996: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, Association for the Advancement of Artificial Intelligence, 226–231, https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf.

  • Evans, J. L., and R. E. Shemo, 1996: A procedure for automated satellite-based identification and climatology development of various classes of organized convection. J. Appl. Meteor., 35, 638652, https://doi.org/10.1175/1520-0450(1996)035<0638:APFASB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 11291152, https://doi.org/10.1175/1520-0442(1990)003<1129:BODCCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahsler, M., M. Piekenbrock, and D. Doran, 2019: dbscan: Fast density-based clustering with R. J. Stat. Software, 91 (1), http://doi.org/10.18637/jss.v091.i01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. J., and T. H. Vonder Haar, 1999: The diurnal cycle of west Pacific deep convection and its relation to the spatial and temporal variation of tropical MCSs. J. Atmos. Sci., 56, 34013415, https://doi.org/10.1175/1520-0469(1999)056<3401:TDCOWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

    • Crossref
    • Export Citation
  • Knaff, J. A., D. P. Brown, J. Courtney, G. M. Gallina, and J. L. Beven, 2010: An evaluation of Dvorak technique–based tropical cyclone intensity estimates. Wea. Forecasting, 25, 13621379, https://doi.org/10.1175/2010WAF2222375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and J. P. Kossin, 2007: New global tropical cyclone data set from ISCCP B1 geostationary satellite observations. J. Appl. Remote Sens., 1, 013505, https://doi.org/10.1117/1.2712816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 14591473, https://doi.org/10.1175/2009MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and C. S. Velden, 2004: A pronounced bias in tropical cyclone minimum sea level pressure estimation based on the Dvorak technique. Mon. Wea. Rev., 132, 165173, https://doi.org/10.1175/1520-0493(2004)132<0165:APBITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 32343260, https://doi.org/10.1175/1520-0493(1993)121<3234:SCARPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2008: Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 46, 35743580, https://doi.org/10.1109/TGRS.2008.2000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2010: Detecting tropical cyclone genesis from remotely sensed infrared image data. IEEE Geosci. Remote Sens. Lett., 7, 826830, https://doi.org/10.1109/LGRS.2010.2048694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2011: Estimating tropical cyclone intensity from infrared image data. Wea. Forecasting, 26, 690698, https://doi.org/10.1175/WAF-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, https://doi.org/10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., G. Valliere-Kelley, M. F. Piñeros, and J. S. Tyo, 2012: Tropical cyclone intensity estimation in the North Atlantic basin using an improved deviation angle variance technique. Wea. Forecasting, 27, 12641277, https://doi.org/10.1175/WAF-D-11-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., K. M. Wood, O. G. Rodríguez-Herrera, M. F. Piñeros, and J. S. Tyo, 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle variance technique. Wea. Forecasting, 29, 505516, https://doi.org/10.1175/WAF-D-13-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Herrera, O. G., K. M. Wood, K. P. Dolling, W. T. Black, E. A. Ritchie, and J. S. Tyo, 2015: Automatic tracking of pregenesis tropical disturbances within the deviation angle variance system. IEEE Geosci. Remote Sens. Lett., 12, 254258, https://doi.org/10.1109/LGRS.2014.2334561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B. J., B. J. Soden, and X. Q. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, https://doi.org/10.1029/2003JD004117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Zhou, 2007: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99, 116, https://doi.org/10.1007/s00703-006-0238-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., O. G. Rodríguez-Herrera, E. A. Ritchie, M. F. Piñeros, I. A. Hernández, and J. S. Tyo, 2015: Tropical cyclogenesis detection in the North Pacific using the deviation angle variance technique. Wea. Forecasting, 30, 16631672, https://doi.org/10.1175/WAF-D-14-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131, 780798, https://doi.org/10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 14
Full Text Views 15 15 0
PDF Downloads 19 19 0

A Parameter for Quantifying the Macroscale Asymmetry of Tropical Cyclone Cloud Clusters

View More View Less
  • 1 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom, and Department of Earth Sciences, University of Hong Kong, Hong Kong, China
  • | 2 Department of Earth Sciences, and Department of Physics, University of Hong Kong, Hong Kong, China
  • | 3 Department of Earth Sciences, University of Hong Kong, Hong Kong, China
© Get Permissions
Restricted access

Abstract

A parameter to quantify macroscale (i.e., systemwide) asymmetry of tropical cyclones (TC) in infrared satellite images, galaxy asymmetry (GASYM), which is adopted from astronomy, is described. In addition, an alternative approach to identify TC cloud clusters that is based on a density-based spatial clustering algorithm, cluster identification (CI), is presented in this study. Although a commonly used approach in TC study, the predefined radius of calculation (ROC), can be used to identify the TC region in the calculation of GASYM, this approach is not optimal because the size of the TC cloud cluster is often unknown in the calculation. The area specified by the ROC often includes pixels that do not belong to the TC cloud cluster and excludes pixels that belong to the TC cloud cluster. The CI approach addresses this issue by identifying TC cloud clusters of any size with any shape, because it depends solely on the threshold brightness temperature that corresponds to the upper bound of the brightness temperature of the specific cloud types. This study shows that the CI approach can be integrated into the GASYM calculation as an objective measure of TC symmetry. Although GASYM-CI and intensity are correlated, the relationship between GASYM-CI and intensity depends on the size of the TC cloud cluster. Comparison between GASYM and an existing objective method to quantify symmetry of TCs, the deviation angle variance technique, is also presented.

Corresponding author: Kelvin Sai-cheong Ng, k.s.ng@bham.ac.uk

Abstract

A parameter to quantify macroscale (i.e., systemwide) asymmetry of tropical cyclones (TC) in infrared satellite images, galaxy asymmetry (GASYM), which is adopted from astronomy, is described. In addition, an alternative approach to identify TC cloud clusters that is based on a density-based spatial clustering algorithm, cluster identification (CI), is presented in this study. Although a commonly used approach in TC study, the predefined radius of calculation (ROC), can be used to identify the TC region in the calculation of GASYM, this approach is not optimal because the size of the TC cloud cluster is often unknown in the calculation. The area specified by the ROC often includes pixels that do not belong to the TC cloud cluster and excludes pixels that belong to the TC cloud cluster. The CI approach addresses this issue by identifying TC cloud clusters of any size with any shape, because it depends solely on the threshold brightness temperature that corresponds to the upper bound of the brightness temperature of the specific cloud types. This study shows that the CI approach can be integrated into the GASYM calculation as an objective measure of TC symmetry. Although GASYM-CI and intensity are correlated, the relationship between GASYM-CI and intensity depends on the size of the TC cloud cluster. Comparison between GASYM and an existing objective method to quantify symmetry of TCs, the deviation angle variance technique, is also presented.

Corresponding author: Kelvin Sai-cheong Ng, k.s.ng@bham.ac.uk
Save