• Baird, M. H. I., M. G. Senior, and R. J. Thompson, 1967: Terminal velocities of spherical particles in a vertically oscillating liquid. Chem. Eng. Sci., 22, 551558, https://doi.org/10.1016/0009-2509(67)80038-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basset, A. B., 1889: A Treatise on Hydrodynamics with Numerous Examples. Vol. 2. Forgotten Books, 368 pp.

  • Bhartendu, 1969: Audio frequency pressure variations from lightning discharges. J. Atmos. Terr. Phys., 31, 743747, https://doi.org/10.1016/0021-9169(69)90131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhartendu, 1971: Sound pressure of thunder. J. Geophys. Res., 76, 35153516, https://doi.org/10.1029/JC076i015p03515.

  • Blekhman, I. I., L. I. Blekhman, V. S. Sorokin, L. A. Vaisberg, V. B. Vasilkov, and K. S. Yakimova, 2013: Motion of gas bubbles and rigid particles in vibrating fluid-filled volumes. Procedia IUTAM, 8, 4350, https://doi.org/10.1016/j.piutam.2013.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodhika, J. A. P., W. G. D. Dharmarathna, M. Fernando, and V. Cooray, 2018: Characteristics of thunder pertinent to tropical lightning. 34th Int. Conf. on Lightning Protection, Rzeszow, Poland, IEEE, https://doi.org/10.1109/ICLP.2018.8503455.

    • Crossref
    • Export Citation
  • Cleckler, J., S. Elghobashi, and F. Liu, 2012: On the motion of inertial particles by sound waves. Phys. Fluids, 24, 033301, https://doi.org/10.1063/1.3696243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., B. Lipkens, and T. M. Cameron, 2006: The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols. J. Aerosol Sci., 37, 540553, https://doi.org/10.1016/j.jaerosci.2005.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, F., M. Zhang, and N. K. Chang, 2013: Numerical simulation of interaction between two PM2.5 particles under acoustic travelling wave conditions. AIP Powders And Grains 2013: Proc. Seventh Int. Conf. on Micromechanics of Granular Media, Sydney, Australia, Malardalen University, 855, https://doi.org/10.1063/1.4812066.

    • Crossref
    • Export Citation
  • Finlay, W., 2001: Motion of a single aerosol particle in a fluid. The Mechanics of Inhaled Pharmaceutical Aerosols, Academic Press, 17–45.

    • Crossref
    • Export Citation
  • González, I. A., T. L. Hoffmann, and J. A. Gallego, 2000: Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz. J. Aerosol Sci., 31, 14611468, https://doi.org/10.1016/S0021-8502(00)00046-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassan, S., and M. Kawaji, 2008: The effects of vibrations on particle motion in a viscous fluid cell. J. Appl. Mech., 75, 031012, https://doi.org/10.1115/1.2839658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1990: Velocity of particles falling in vertically oscillating flow. J. Hydraul. Eng., 116, 2335, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(23).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, S., and M. Yamasaka, 1989: Fall velocity of single spheres in vertically oscillating fluids. Fluid Dyn. Res., 5, 203216, https://doi.org/10.1016/0169-5983(89)90022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I., S. Elghobashi, and W. A. Sirignano, 2000: On the equation for spherical-particle motion: Effect of Reynolds and acceleration numbers. J. Fluid Mech., 367, 221253, https://doi.org/10.1017/S0022112098001657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., and J. J. Riley, 1983: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883889, https://doi.org/10.1063/1.864230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1958: The physics of cloud modification. Advances in Geophysics, Vol. 5, Academic Press, 223–303, https://doi.org/10.1016/S0065-2687(08)60079-5.

    • Crossref
    • Export Citation
  • Mei, R., C. J. Lawrence, and R. J. Adrian, 1991: Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. Phys. Fluids, 233, 613631, https://doi.org/10.1017/S0022112091000629.

    • Search Google Scholar
    • Export Citation
  • Oseen, C. W., 1927: Hydrodynamik. Akademische Verlagsgesellschaft, 362 pp.

  • Sadighzadeh, A., H. Mohammadpour, L. Omidi, and M. J. Jafari, 2018: Application of acoustic agglomeration for removing sulfuric acid mist from air stream. Sustain. Environ. Res., 28, 2024, https://doi.org/10.1016/j.serj.2017.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience, 1326 pp.

    • Crossref
    • Export Citation
  • Setayeshgar, A., M. G. Lipsett, C. R. Koch, and D. S. Nobes, 2015: Particle motion in a macroscale, multiwavelength acoustic field. J. Fluids Eng., 137, 011302, https://doi.org/10.1115/1.4027777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sujith, R. I., G. A. Waldherr, J. I. Jagoda, and B. T. Zinn, 1997: An experimental investigation of the behavior of droplets in axial acoustic fields. J. Vib. Acoust., 119, 285292, https://doi.org/10.1115/1.2889722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sujith, R. I., G. A. Waldherr, J. I. Jagoda, and B. T. Zinn, 1999: A theoretical investigation of the behavior of droplets in axial acoustic fields. J. Vib. Acoust., 121, 286294, http://doi.org/10.1115/1.2893978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulaikova, T., and S. Amirova, 2015: Acoustical method and device for precipitation enhancement inside natural clouds. Sci. Discovery, 3, 1825, https://doi.org/10.11648/j.sd.s.2015030201.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrek, R. J., R. Kithil, R. L. Holle, J. Allsopp, and M. A. Cooper, 2020: The science of thunder. National Lightning Safety Institute, accessed 25 March 2020, http://www.lightningsafety.com/nlsi_info/thunder2.html.

  • WMO, 2019: Classifying clouds. Accessed 5 September 2019, https://public.wmo.int/en/WorldMetDay2017/classifying-clouds.

  • Yuhua, O. Y., and Y. Ping, 2012: Audible thunder characteristic and the relation between peak frequency and lightning parameters. J. Earth Syst. Sci., 121, 211220, https://doi.org/10.1007/s12040-012-0147-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., Z. Luo, M. Fang, J. Jiang, C. Hao, D. Sha, and M. Lu, 2015: Numerical study of the movement of fine particle in sound wave field. Energy Procedia, 75, 24152420, https://doi.org/10.1016/j.egypro.2015.07.198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., Z. Luo, J. P. Jiang, H. Chen, M. S. Lu, and M. X. Fang, 2016: Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment. Powder Technol., 289, 5259, https://doi.org/10.1016/j.powtec.2015.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., Z. Luo, M. Fang, M. Lu, J. Jiang, C. Hao, and M. He, 2017: Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography. Appl. Energy, 185, 22452250, https://doi.org/10.1016/j.apenergy.2016.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zu, K., Y. Yao, M. Cai, F. Zhao, and D. L. Cheng, 2017: Modeling and experimental study on acoustic agglomeration for dust particle removal. J. Aerosol Sci., 114, 6276, https://doi.org/10.1016/j.jaerosci.2017.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 432 432 36
Full Text Views 46 46 4
PDF Downloads 70 70 6

Mechanism of Cloud Droplet Motion under Sound Wave Actions

View More View Less
  • 1 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
  • | 2 State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, and State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
© Get Permissions
Restricted access

Abstract

Sound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Corresponding author: Jun Qiu, aeroengine@tsinghua.edu.cn

Abstract

Sound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Corresponding author: Jun Qiu, aeroengine@tsinghua.edu.cn
Save