• Ballarotta, M., and et al. , 2019: On the resolutions of ocean altimetry maps. Ocean Sci., 15, 10911109, https://doi.org/10.5194/os-15-1091-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckers, J. M., and M. Rixen, 2003: EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Technol., 20, 18391856, https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, J. L., 1975: Multidimensional binary search trees used for associative searching. Commun. ACM, 18, 509517, https://doi.org/10.1145/361002.361007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessières, L., and et al. , 2017: Development of a probabilistic ocean modelling system based on NEMO 3.5: Application at eddying resolution. Geosci. Model Dev., 10, 10911106, https://doi.org/10.5194/gmd-10-1091-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/QJ.776.

  • Dibarboure, G., M.-I. Pujol, F. Briol, P. Y. L. Traon, G. Larnicol, N. Picot, F. Mertz, and M. Ablain, 2011: Jason-2 in DUACS: Updated system description, first tandem results and impact on processing and products. Mar. Geod., 34, 214241, https://doi.org/10.1080/01490419.2011.584826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., L.-L. Fu, D. P. Lettenmaier, D. E. Alsdorf, E. Rodriguez, and D. Esteban-Fernandez, 2010: The Surface Water and Ocean Topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766779, https://doi.org/10.1109/JPROC.2010.2043031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fablet, R., J. Verron, B. Mourre, B. Chapron, and A. Pascual, 2018a: Improving mesoscale altimetric data from a multitracer convolutional processing of standard satellite-derived products. IEEE Trans. Geosci. Remote Sens., 56, 25182525, https://doi.org/10.1109/TGRS.2017.2750491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fablet, R., P. Viet, R. Lguensat, P.-H. Horrein, and B. Chapron, 2018b: Spatio-temporal interpolation of cloudy SST fields using conditional analog data assimilation. Remote Sens., 10, 310, https://doi.org/10.3390/rs10020310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and R. Ferrari, 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488488, https://doi.org/10.1029/2008EO480003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Ochoa, E. Pallàs-Sanz, J. Sheinbaum, F. Andrade-Canto, J. Candela, and J.-M. Molines, 2016: Loop Current frontal eddies: Formation along the Campeche Bank and impact of coastally trapped waves. J. Phys. Oceanogr., 46, 33393363, https://doi.org/10.1175/JPO-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., and et al. , 2019: From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci., 6, 234, https://doi.org/10.3389/FMARS.2019.00234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lguensat, R., P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, 2017: The analog data assimilation. Mon. Wea. Rev., 145, 40934107, https://doi.org/10.1175/MWR-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lguensat, R., P. H. Viet, M. Sun, G. Chen, F. Tian, B. Chapron, and R. Fablet, 2019: Data-driven interpolation of sea level anomalies using analog data assimilation. Remote Sens., 11, 858, https://doi.org/10.3390/rs11070858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations in data assimilation. Inverse Probl. Sci. Eng., 21, 387398, https://doi.org/10.1080/17415977.2012.712527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., and et al. , 2014: Ensembles of eddying ocean simulations for climate. CLIVAR Exchanges, Vol. 65, International CLIVAR Project Office, Southampton, United Kingdom, 19–22.

  • Ponte, R. M., and R. D. Ray, 2002: Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett., 29, 2153, https://doi.org/10.1029/2002GL016340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., G. Dibarboure, P.-Y. Le Traon, and P. Klein, 2012: Using high-resolution altimetry to observe mesoscale signals. J. Atmos. Oceanic Technol., 29, 14091416, https://doi.org/10.1175/JTECH-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleicher, D., 2007: Hausdorff dimension, its properties, and its surprises. Amer. Math. Mon., 114, 509528, https://doi.org/10.1080/00029890.2007.11920440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takens, F., 1981: Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980, D. A. Rand and L.-S. Young, Eds., Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, 366–381, https://doi.org/10.1007/BFB0091903.

    • Crossref
    • Export Citation
  • Tandeo, P., P. Ailliot, J. J. Ruiz, A. Hannart, B. Chapron, R. Easton, and R. Fablet, 2015: Combining analog method and ensemble data assimilation: Application to the Lorenz-63 chaotic system. Machine Learning and Data Mining Approaches to Climate Science, Springer, 3–12.

    • Crossref
    • Export Citation
  • Tandeo, P., P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido, and Y. Zhen, 2018: A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation. arXiv, https://arxiv.org/abs/1807.11221.

  • Ubelmann, C., P. Klein, and L. L. Fu, 2015: Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J. Atmos. Oceanic Technol., 32, 177184, https://doi.org/10.1175/JTECH-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., 1995: Compactly supported positive definite radial functions. Adv. Comput. Math., 4, 283292, https://doi.org/10.1007/BF03177517.

  • Zhen, Y., P. Tandeo, S. Leroux, S. Metref, T. Penduff, and J. L. Sommer, 2019: 3da code and data. Zenodo, accessed 17 December 2019, https://doi.org/10.5281/zenodo.3559784.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 287 287 13
Full Text Views 43 43 4
PDF Downloads 54 54 4

An Adaptive Optimal Interpolation Based on Analog Forecasting: Application to SSH in the Gulf of Mexico

View More View Less
  • 1 IMT Atlantique, Lab-STICC, UBL, Brest, France
  • | 2 Ocean-Next, Grenoble, France
  • | 3 Université Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Because of the irregular sampling pattern of raw altimeter data, many oceanographic applications rely on information from sea surface height (SSH) products gridded on regular grids where gaps have been filled with interpolation. Today, the operational SSH products are created using the simple, but robust, optimal interpolation (OI) method. If well tuned, the OI becomes computationally cheap and provides accurate results at low resolution. However, OI is not adapted to produce high-resolution and high-frequency maps of SSH. To improve the interpolation of SSH satellite observations, a data-driven approach (i.e., constructing a dynamical forecast model from the data) was recently proposed: analog data assimilation (AnDA). AnDA adaptively chooses analog situations from a catalog of SSH scenes—originating from numerical simulations or a large database of observations—which allow the temporal propagation of physical features at different scales, while each observation is assimilated. In this article, we review the AnDA and OI algorithms and compare their skills in numerical experiments. The experiments are observing system simulation experiments (OSSE) on the Lorenz-63 system and on an SSH reconstruction problem in the Gulf of Mexico. The results show that AnDA, with no necessary tuning, produces comparable reconstructions as does OI with tuned parameters. Moreover, AnDA manages to reconstruct the signals at higher frequencies than OI. Finally, an important additional feature for any interpolation method is to be able to assess the quality of its reconstruction. This study shows that the standard deviation estimated by AnDA is flow dependent, hence more informative on the reconstruction quality, than the one estimated by OI.

Corresponding author: Yicun Zhen, zhenyicun@protonmail.com

Abstract

Because of the irregular sampling pattern of raw altimeter data, many oceanographic applications rely on information from sea surface height (SSH) products gridded on regular grids where gaps have been filled with interpolation. Today, the operational SSH products are created using the simple, but robust, optimal interpolation (OI) method. If well tuned, the OI becomes computationally cheap and provides accurate results at low resolution. However, OI is not adapted to produce high-resolution and high-frequency maps of SSH. To improve the interpolation of SSH satellite observations, a data-driven approach (i.e., constructing a dynamical forecast model from the data) was recently proposed: analog data assimilation (AnDA). AnDA adaptively chooses analog situations from a catalog of SSH scenes—originating from numerical simulations or a large database of observations—which allow the temporal propagation of physical features at different scales, while each observation is assimilated. In this article, we review the AnDA and OI algorithms and compare their skills in numerical experiments. The experiments are observing system simulation experiments (OSSE) on the Lorenz-63 system and on an SSH reconstruction problem in the Gulf of Mexico. The results show that AnDA, with no necessary tuning, produces comparable reconstructions as does OI with tuned parameters. Moreover, AnDA manages to reconstruct the signals at higher frequencies than OI. Finally, an important additional feature for any interpolation method is to be able to assess the quality of its reconstruction. This study shows that the standard deviation estimated by AnDA is flow dependent, hence more informative on the reconstruction quality, than the one estimated by OI.

Corresponding author: Yicun Zhen, zhenyicun@protonmail.com
Save