• Balsley, B. B., G. Svensson, and M. Tjernström, 2008: On the scale-dependence of the gradient Richardson number in the residual layer. Bound.-Layer Meteor., 127, 5772, https://doi.org/10.1007/s10546-007-9251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K. M., 2010: Ensemble empirical mode decomposition for high frequency ECG noise reduction. Biomed. Tech., 55, 193201, https://doi.org/10.1515/bmt.2010.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S., Z. Sheng, H. Du, W. Ge, and W. Zhang, 2020: A channel selection method for hyperspectral atmospheric infrared sounders based on layering. Atmos. Meas. Tech., 13, 629644, https://doi.org/10.5194/amt-13-629-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comon, P., 1994: Independent component analysis, a new concept? Signal Process., 36, 287314.

  • Donoho, D. L., 1995: De-noising by soft-thresholding. IEEE Trans. Inf. Theory, 41, 613627, https://doi.org/10.1109/18.382009.

  • Dragomiretskiy, K., and D. Zosso, 2013: Variational mode decomposition. IEEE Trans. Signal Process., 62, 531544, https://doi.org/10.1109/TSP.2013.2288675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, M. A. Geller, D. A. Lawrence, J. Werne, and B. B. Balsley, 2016: Numerical modeling of multiscale dynamics at a high Reynolds number: Instabilities, turbulence, and an assessment of Ozmidov and Thorpe scales. J. Atmos. Sci., 73, 555578, https://doi.org/10.1175/JAS-D-14-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13, 688702, https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, R. M. R., 2013: Entropy and Information Theory. 1st ed. Springer Science and Business Media, 332 pp., https://doi.org/10.1007/978-3-540-32851-3_5.

    • Crossref
    • Export Citation
  • He, Y., Z. Sheng, and M. He, 2020: Spectral analysis of gravity waves from near space high-resolution balloon data in northwest China. Atmosphere, 11, 133, https://doi.org/10.3390/atmos11020133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hestenes, M. R., 1969: Multiplier and gradient methods. J. Optim. Theory Appl., 4, 303320, https://doi.org/10.1007/BF00927673.

  • Huang, N. E., and Coauthors, 1996: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454A, 903995, https://doi.org/10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and C. Garrett, 2004: Effects of noise on Thorpe scales and run lengths. J. Phys. Oceanogr., 34, 23592372, https://doi.org/10.1175/JPO2641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohma, M., K. Sato, Y. Tomikawa, K. Nishimura, and T. Sato, 2019: Estimate of turbulent energy dissipation rate from the VHF radar and radiosonde observations in the Antarctic. J. Geophys. Res. Atmos., 124, 29762993, https://doi.org/10.1029/2018JD029521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., 1991: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37, 145151, https://doi.org/10.1109/18.61115.

  • Luce, H., R. Wilson, F. Dalaudier, H. Hashiguchi, N. Nishi, Y. Shibagaki, and T. Nakajo, 2014: Simultaneous observations of tropospheric turbulence from radiosondes using Thorpe analysis and the VHF MU radar. Radio Sci., 49, 11061123, https://doi.org/10.1002/2013RS005355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mai, Y., Z. Sheng, H. Shi, Q. Liao, and W. Zhang, 2020: Spatiotemporal distribution of atmospheric ducts in Alaska and its relationship with the Arctic vortex. Int. J. Antennas Propag., 2020, 9673289, https://doi.org/10.1155/2020/9673289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohanty, S., K. K. Gupta, and K. S. Raju, 2015: Comparative study between VMD and EMD in bearing fault diagnosis. Ninth Int. Conf. on Industrial and Information Systems, Gwalior, India, IEEE, https://doi.org/10.1109/ICIINFS.2014.7036515.

    • Crossref
    • Export Citation
  • Muschinski, A., 1997: Turbulence and gravity waves in the vicinity of a midtropospheric warm front: A case study using VHF echo-intensity measurements and radiosonde data. Radio Sci., 32, 11611178, https://doi.org/10.1029/97RS00054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oweiss, K. G., and D. J. Anderson, 2001: Noise reduction in multichannel neural recordings using a new array wavelet denoising algorithm. Neurocomputing, 38–40, 16871693, https://doi.org/10.1016/S0925-2312(01)00533-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paninski, L., 2003: Estimation of entropy and mutual information. Neural Comput., 15, 11911253, https://doi.org/10.1162/089976603321780272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pen, U. L., 1999: Application of wavelets to filtering of noisy data. Philos. Trans. Roy. Soc., 357A, 25612571, https://doi.org/10.1098/rsta.1999.0448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, H., F. Long, and C. Ding, 2005: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27, 12261238, https://doi.org/10.1109/TPAMI.2005.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piera, J., E. Roget, and J. Catalan, 2002: Turbulent patch identification in microstructure profiles: A method based on wavelet denoising and Thorpe displacement analysis. J. Atmos. Oceanic Technol., 19, 13901402, https://doi.org/10.1175/1520-0426(2002)019<1390:TPIIMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockafellar, R. T., 1973: A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program., 5, 354373, https://doi.org/10.1007/BF01580138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, A., M. Gerding, and F. J. Lübken, 2015: Comparing turbulent parameters obtained from LITOS and radiosonde measurements. Atmos. Chem. Phys., 15, 21592166, https://doi.org/10.5194/acp-15-2159-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: Energetics arguments and turbulence simulations. J. Phys. Oceanogr., 45, 25222543, https://doi.org/10.1175/JPO-D-14-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharpley, R. C., and V. Vatchev, 2006: Analysis of the intrinsic mode functions. Constr. Approximation, 24, 1747, https://doi.org/10.1007/s00365-005-0603-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., 286A, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Wang, L., M. A. Geller, and D. C. Fritts, 2019: Direct numerical simulation guidance for Thorpe analysis to obtain quantitatively reliable turbulence parameters. J. Atmos. Oceanic Technol., 36, 22472255, https://doi.org/10.1175/JTECH-D-18-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiener, N., 1949: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT Press, 163 pp.

    • Crossref
    • Export Citation
  • Wilson, R., H. Luce, F. Dalaudier, and J. Lefrère, 2010: Turbulence patch identification in potential density or temperature profiles. J. Atmos. Oceanic Technol., 27, 977993, https://doi.org/10.1175/2010JTECHA1357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., F. Dalaudier, and H. Luce, 2011: Can one detect small-scale turbulence from standard meteorological radiosondes? Atmos. Meas. Tech., 4, 795804, https://doi.org/10.5194/amt-4-795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., H. Luce, H. Hashiguchi, N. Nishi, and Y. Yabuki, 2014: Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data. J. Atmos. Sol.-Terr. Phys., 118, 7889, https://doi.org/10.1016/j.jastp.2014.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., H. Hashiguchi, and M. Yabuki, 2018: Vertical spectra of temperature in the free troposphere at meso-and-small scales according to the flow regime: Observations and interpretation. Atmosphere, 9, 415, https://doi.org/10.3390/atmos9110415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., J. Li, S. Wu, W. Li, L. Yang, M. Dong, and Z. Zeng, 2018: Adaptive DSPI phase denoising using mutual information and 2D variational mode decomposition. Meas. Sci. Technol., 29, 045203, https://doi.org/10.1088/1361-6501/aaa380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, C., Y. Lv, and Z. Dang, 2016: A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition. Shock Vib., 2016, 9372691, https://doi.org/10.1155/2016/9372691.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., S. D. Zhang, C. M. Huang, K. M. Huang, Y. Gong, Q. Gan, and Y. H. Zhang, 2019: Statistical study of atmospheric turbulence by Thorpe analysis. J. Geophys. Res. Atmos., 124, 28972908, https://doi.org/10.1029/2018JD029686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X. R., Z. Sheng, J. W. Li, H. Yu, and K. J. Wei, 2019: Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. Atmos., 124, 10 59210 607, https://doi.org/10.1029/2019JD030754.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 509 0 0
Full Text Views 347 150 16
PDF Downloads 293 92 8

Adaptive Variational Mode Decomposition Method for Eliminating Instrument Noise in Turbulence Detection

Yang He College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Yang He in
Current site
Google Scholar
PubMed
Close
,
Zheng Sheng College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Changsha, China

Search for other papers by Zheng Sheng in
Current site
Google Scholar
PubMed
Close
,
Yanwei Zhu College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

Search for other papers by Yanwei Zhu in
Current site
Google Scholar
PubMed
Close
, and
Mingyuan He College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Mingyuan He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Noise removal is a key issue in the retrieval of turbulence from meteorological radiosonde data using the method proposed by Thorpe. Only by reducing as much as possible the influence of noise in the potential temperature fluctuations can the retrieval results reflect the turbulence characteristics of the real atmosphere. In this paper, an adaptive variational mode decomposition (VMD) method is proposed that is used to remove noise fluctuations from the potential temperature profile, and particle swarm optimization and mutual information are used to optimize the preset VMD parameters. The Thorpe method is applied to the denoised potential temperature profile to identify and characterize turbulent regions. The results show that the adaptive VMD method is very effective for denoising the potential temperature profile in both simulation experiments and actual detection data. The real turbulence overturn can be selected from the inversions by optimal smoothing and statistical tests. This method is an improvement on the Wilson method and allows the Thorpe method to be applied to daytime sounding data, avoiding the confusion between noise and turbulence that results in the distortion of the turbulence scale.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Zheng Sheng, 19994035@sina.com

Abstract

Noise removal is a key issue in the retrieval of turbulence from meteorological radiosonde data using the method proposed by Thorpe. Only by reducing as much as possible the influence of noise in the potential temperature fluctuations can the retrieval results reflect the turbulence characteristics of the real atmosphere. In this paper, an adaptive variational mode decomposition (VMD) method is proposed that is used to remove noise fluctuations from the potential temperature profile, and particle swarm optimization and mutual information are used to optimize the preset VMD parameters. The Thorpe method is applied to the denoised potential temperature profile to identify and characterize turbulent regions. The results show that the adaptive VMD method is very effective for denoising the potential temperature profile in both simulation experiments and actual detection data. The real turbulence overturn can be selected from the inversions by optimal smoothing and statistical tests. This method is an improvement on the Wilson method and allows the Thorpe method to be applied to daytime sounding data, avoiding the confusion between noise and turbulence that results in the distortion of the turbulence scale.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Zheng Sheng, 19994035@sina.com
Save