• Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, https://doi.org/10.1175/2008BAMS2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, https://doi.org/10.1002/joc.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, S. K. Gulev, and C. Woods, 2017: Climatologically significant effects of some approximations in the bulk parameterizations of turbulent air–sea fluxes. J. Phys. Oceanogr., 47, 528, https://doi.org/10.1175/JPO-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. H., and P. P. Niiler, 1977: Energetics of the Florida Current. J. Mar. Res., 35, 163191.

  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., M. R. Mazloff, and L. D. Talley, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, https://doi.org/10.1175/2011JCLI3858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128129, https://doi.org/10.1126/science.aav7619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and L. Thompson, 2006: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys. Res. Lett., 33, L09604, https://doi.org/10.1029/2006GL025784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Z., L. Xie, B. Liu, K. Wu, D. Zhao, and T. Yu, 2009: Coupling winds to ocean surface currents over the global ocean. Ocean Modell., 29, 261268, https://doi.org/10.1016/j.ocemod.2009.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., M. O. Baringer, and G. J. Goni, 2019: Slow down of the Gulf Stream during 1993–2016. Sci. Rep., 9, 6672, https://doi.org/10.1038/s41598-019-42820-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, https://doi.org/10.1175/JPO2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., V. Jampana, R. A. Weller, S. P. Bigorre, A. J. Plueddemann, and C. W. Fairall, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10, 27642781, https://doi.org/10.1175/1520-0442(1997)010<2764:UIGOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16, 32743295, https://doi.org/10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of United States. Mon. Wea. Rev., 118, 324342, https://doi.org/10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2016: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N., B. Barnier, T. Penduff, and J.-M. Molines, 2004: Interannual variation of Gulf Stream heat transport in a high resolution model forced by reanalysis data. Climate Dyn., 23, 341351, https://doi.org/10.1007/s00382-004-0449-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/sites/default/files/elibrary/2019/19027-global-reanalysis-goodbye-era-interim-hello-era5.pdf.

  • Hirahara, S., M. Alonso Balmaseda, E. de Boisseson and H. Hersbach, 2016: Sea surface temperature and sea ice concentration for ERA5. ERA Rep. Series 26, 25 pp., https://www.ecmwf.int/sites/default/files/elibrary/2016/16555-sea-surface-temperature-and-sea-ice-concentration-era5.pdf.

  • Huang, R. X., 2011: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 828 pp.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, https://doi.org/10.1016/j.jmarsys.2009.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14, 17801789, https://doi.org/10.1175/1520-0442(2001)014<1780:ACOENN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1995: Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides: 1. Model description and results. J. Geophys. Res., 100, 25 28325 308, https://doi.org/10.1029/95JC02578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324326, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, M., 1958: A method for the harmonic analysis of tides. Oceanogr. Mag., 10, 109.

  • Murray, F. W., 1986: On the computation of saturation vapor pressure. J. Climate Appl. Meteor., 6, 203204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394, https://doi.org/10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31, 2949, https://doi.org/10.1029/92RG02583.

  • Song, X., 2020: The importance of relative wind speed in estimating air–sea turbulent heat fluxes in bulk formulas: Examples in the Bohai Sea. J. Atmos. Oceanic Technol., 37, 589603, https://doi.org/10.1175/JTECH-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2012: High-latitude contribution to global variability of air–sea sensible heat flux. J. Climate, 25, 35153531, https://doi.org/10.1175/JCLI-D-11-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2013: How much net surface heat flux should go into the western Pacific warm pool? J. Geophys. Res. Oceans, 118, 35693585, https://doi.org/10.1002/jgrc.20246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2017: Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage. J. Geophys. Res. Oceans, 122, 40684087, https://doi.org/10.1002/2016JC012254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., M. Kubota, M. F. Cronin, S. Iwasaki, M. Konda, and H. Ichikawa, 2010: An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J. Geophys. Res., 115, C03018, https://doi.org/10.1029/2009JC005545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Tracking Earth’s energy. Science, 328, 316317, https://doi.org/10.1126/science.1187272.

  • Weare, B. C., 1989: Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus, 41A, 357370, https://doi.org/10.1111/j.1600-0870.1989.tb00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, F., 1961: The effect of meanders on the kinetic energy balance of the Gulf Stream. Tellus, 13, 392401, https://doi.org/10.3402/tellusa.v13i3.9515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R., J. T. Farrar, J. Buckley, S. Matthew, R. Venkatesan, and J. S. Lekha, 2016: Air-sea interaction in the Bay of Bengal. Oceanography, 29 (2), 2837, https://doi.org/10.5670/oceanog.2016.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., X. Zhai, and Z. Wang, 2017: Decadal-mean impact of including ocean surface currents in bulk formulas on surface air–sea fluxes and ocean general circulation. J. Climate, 30, 95119525, https://doi.org/10.1175/JCLI-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., J. M. Bane, and L. M. Goodman, 1995: Modification of the Gulf Stream through strong air–sea interactions in winter: Observations and numerical simulations. J. Phys. Oceanogr., 25, 533557, https://doi.org/10.1175/1520-0485(1995)025<0533:MOTGST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390, https://doi.org/10.1175/2007JCLI1714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2019: Global air-sea fluxes of heat, fresh water, and momentum: Energy budget closure and unanswered questions. Annu. Rev. Mar. Sci., 11, 227248, https://doi.org/10.1146/annurev-marine-010816-060704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and Coauthors, 2013: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. International CLIVAR Publ. Series 189, 42 pp., http://www.clivar.org/sites/default/files/documents/ICPO189_WHOI_fluxes_workshop.pdf.

  • Zhao, M., G. Wang, H. H. Hendon, and O. Alves, 2011: Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model. Climate Dyn., 36, 12911302, https://doi.org/10.1007/s00382-010-0823-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 336 0 0
Full Text Views 334 200 33
PDF Downloads 441 166 14

The Importance of Including Sea Surface Current when Estimating Air–Sea Turbulent Heat Fluxes and Wind Stress in the Gulf Stream Region

Xiangzhou Song Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Xiangzhou Song in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using buoy observations from 2004 to 2010 and newly released atmospheric reanalysis and satellite altimetry-derived geostrophic currents from 1993 to 2017, the quantitative contribution of daily mean surface currents to air–sea turbulent heat flux and wind stress uncertainties in the Gulf Stream (GS) region is investigated based on bulk formulas. At four buoy stations, the daily mean latent (sensible) heat flux difference between the estimates with and without surface currents range from −18 (−4) to 20 (4) W m−2, while the daily mean wind stress difference ranges from −0.04 to 0.02 N m−2. The positive values indicate higher estimates with opposite directions between surface currents and absolute winds. The transition between positive and negative differences is significantly associated with synoptic-scale weather variations. The uncertainties based on buoy observations are approximately 7% and 3% for wind stress and turbulent heat fluxes, respectively. The new reanalysis and satellite geostrophic currents confirm the uncertainties identified by buoy observations with acceptable discrepancies and provide a spatial view of the uncertainty fields. The mean geostrophic currents are aligned with the surface wind along the GS; therefore, the turbulent heat fluxes and wind stress will be “underestimated” with surface currents included. However, on both sides of the GS, the surface flow can be upwind due to possible mechanisms of eddy–mean flow interactions and recirculations, resulting in higher turbulent heat flux estimations. The wind stress and turbulent heat flux uncertainties experience significant seasonal variations and show long-term trends.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiangzhou Song, song@ouc.edu.cn

Abstract

Using buoy observations from 2004 to 2010 and newly released atmospheric reanalysis and satellite altimetry-derived geostrophic currents from 1993 to 2017, the quantitative contribution of daily mean surface currents to air–sea turbulent heat flux and wind stress uncertainties in the Gulf Stream (GS) region is investigated based on bulk formulas. At four buoy stations, the daily mean latent (sensible) heat flux difference between the estimates with and without surface currents range from −18 (−4) to 20 (4) W m−2, while the daily mean wind stress difference ranges from −0.04 to 0.02 N m−2. The positive values indicate higher estimates with opposite directions between surface currents and absolute winds. The transition between positive and negative differences is significantly associated with synoptic-scale weather variations. The uncertainties based on buoy observations are approximately 7% and 3% for wind stress and turbulent heat fluxes, respectively. The new reanalysis and satellite geostrophic currents confirm the uncertainties identified by buoy observations with acceptable discrepancies and provide a spatial view of the uncertainty fields. The mean geostrophic currents are aligned with the surface wind along the GS; therefore, the turbulent heat fluxes and wind stress will be “underestimated” with surface currents included. However, on both sides of the GS, the surface flow can be upwind due to possible mechanisms of eddy–mean flow interactions and recirculations, resulting in higher turbulent heat flux estimations. The wind stress and turbulent heat flux uncertainties experience significant seasonal variations and show long-term trends.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiangzhou Song, song@ouc.edu.cn
Save