The Deep Autonomous Profiler (DAP), a Platform for Hadal Profiling and Water Sample Collection

Lillian Muir aUniversity of Rhode Island, Narragansett, Rhode Island

Search for other papers by Lillian Muir in
Current site
Google Scholar
PubMed
Close
,
Chris Roman aUniversity of Rhode Island, Narragansett, Rhode Island

Search for other papers by Chris Roman in
Current site
Google Scholar
PubMed
Close
,
David Casagrande aUniversity of Rhode Island, Narragansett, Rhode Island

Search for other papers by David Casagrande in
Current site
Google Scholar
PubMed
Close
, and
Steven D’Hondt aUniversity of Rhode Island, Narragansett, Rhode Island

Search for other papers by Steven D’Hondt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Deep Autonomous Profiler (DAP) is a full-ocean-depth profiler rated to 11 km. Its hydrographic profiles and water samples can provide information on physical oceanographic properties, seawater composition, and biological communities at every depth in the ocean. Designed around a 24-bottle rosette, the DAP is an untethered system able to autonomously collect temperature, salinity, and oxygen profiles, as well as water samples. An adaptive sampling method was developed to analyze the water-column data to identify and sample desired features while under way. Acoustic ranging-only tracking is used to monitor and geolocate the system underwater. In September 2018 the vehicle was tested to 8377 m in the Puerto Rico Trench. The DAP was able to generate full-ocean-depth profiles and collect water samples at both preset and adaptively determined depths. To demonstrate the utility of the DAP, we radiocarbon dated the deepest water sampled in the Puerto Rico Trench, providing the first direct evidence of hadal water-mass age in the trench: 318 ± 25 yr. This paper presents an overview of the DAP system and the Puerto Rico Trench sea trials.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris Roman, croman2@uri.edu

Abstract

The Deep Autonomous Profiler (DAP) is a full-ocean-depth profiler rated to 11 km. Its hydrographic profiles and water samples can provide information on physical oceanographic properties, seawater composition, and biological communities at every depth in the ocean. Designed around a 24-bottle rosette, the DAP is an untethered system able to autonomously collect temperature, salinity, and oxygen profiles, as well as water samples. An adaptive sampling method was developed to analyze the water-column data to identify and sample desired features while under way. Acoustic ranging-only tracking is used to monitor and geolocate the system underwater. In September 2018 the vehicle was tested to 8377 m in the Puerto Rico Trench. The DAP was able to generate full-ocean-depth profiles and collect water samples at both preset and adaptively determined depths. To demonstrate the utility of the DAP, we radiocarbon dated the deepest water sampled in the Puerto Rico Trench, providing the first direct evidence of hadal water-mass age in the trench: 318 ± 25 yr. This paper presents an overview of the DAP system and the Puerto Rico Trench sea trials.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris Roman, croman2@uri.edu
Save
  • Bowen, A. D., and Coauthors, 2008: The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth. OCEANS 2008, Quebec City, QC, Canada, IEEE, 1281–1290, https://doi.org/10.1109/OCEANS.2008.5151993.

    • Crossref
    • Export Citation
  • Bowen, A. D., and Coauthors, 2009: Field trials of the Nereus hybrid underwater robotic vehicle in the Challenger Deep of the Mariana Trench. OCEANS 2009, Biloxi, MS, IEEE, 2769–2778, https://doi.org/10.23919/OCEANS.2009.5422311.

    • Crossref
    • Export Citation
  • Broecker, W. S., 1979: A revised estimate for the radiocarbon age of North Atlantic Deep Water. J. Geophys. Res., 84, 32183226, https://doi.org/10.1029/JC084iC06p03218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and T.-H. Peng, 1982: Tracers in the sea. Columbia University Lamont-Doherty Geological Observatory Rep., 690 pp.

  • Broecker, W. S., S. Blanton, W. M. Smethie Jr., and G. Ostlund, 1991: Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean. Global Biogeochem. Cycles, 5, 87117, https://doi.org/10.1029/90GB02279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and Coauthors, 1998: How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103, 15 83315 843, https://doi.org/10.1029/98JC00248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crease, J., T. Dauphinee, P. Grose, E. Lewis, N. Fofonoff, E. Plakhin, K. Striggow, and W. Zenk, 1988: The acquisition, calibration and analysis of CTD data. UNESCO Tech. Paper in Marine Science 54, 102 pp., https://www.jodc.go.jp/info/ioc_doc/UNESCO_tech/096989eb.pdf.

  • Cui, W., Y. Hu, W. Guo, B. Pan, and F. Wang, 2014: A preliminary design of a movable laboratory for hadal trenches. Methods Oceanogr., 9, 116, https://doi.org/10.1016/j.mio.2014.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, J., and Coauthors, 2015: Data-driven robotic sampling for marine ecosystem monitoring. Int. J. Rob. Res., 34, 14351452, https://doi.org/10.1177/0278364915587723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, B., D. Murphy, C. Janzen, and N. Larson, 2010: Calibration, response, and hysteresis in deep-sea dissolved oxygen measurements. J. Atmos. Oceanic Technol., 27, 920931, https://doi.org/10.1175/2009JTECHO693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777, https://doi.org/10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fossum, T. O., and Coauthors, 2019: Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Robots, 4, eaav3041, https://doi.org/10.1126/scirobotics.aav3041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, P. J. S., and B. A. Keafer, 2003: Sampling techniques and strategies for coastal phytoplankton blooms. Manual on harmful marine microalgae, UNESCO Rep., Vol. 2, 51–76.

  • Gallo, N., J. Cameron, K. Hardy, P. Fryer, D. Bartlett, and L. Levin, 2015: Submersible- and lander-observed community patterns in the Mariana and New Britain Trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Res. I, 99, 119133, https://doi.org/10.1016/j.dsr.2014.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamo, T., and K. Shitashima, 2018: Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean. Proc. Japan Acad., 94B, 4555, https://doi.org/10.2183/pjab.94.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2012: The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr., 42, 291305, https://doi.org/10.1175/JPO-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K., J. Cameron, L. Herbst, T. Bulman, and S. Pausch, 2013: Hadal landers: The Deepsea Challenge ocean trench free vehicles. Oceans 2013, San Diego, CA, IEEE, 1060–1069, https://ieeexplore.ieee.org/document/6741368.

  • Holzer, M., F. W. Primeau, W. M. Smethie, and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res., 115, C07005, https://doi.org/10.1029/2009JC005750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, A. S., E. Olson, and D. C. Moore, 2010: LCM: Lightweight communications and marshalling. 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, IEEE, 4057–4062, https://doi.org/10.1109/IROS.2010.5649358.

    • Crossref
    • Export Citation
  • Ishibashi, S., and Coauthors, 2008: A ROV “ABISMO” for the inspection and sampling in the deepest ocean and its operation support system. OCEANS 2008, Kobe, Japan, IEEE, 405–410, https://doi.org/10.1109/OCEANSKOBE.2008.4530967.

    • Crossref
    • Export Citation
  • Jamieson, A. J., T. Fujii, M. Solan, and I. G. Priede, 2009: HADEEP: Free-falling landers to the deepest places on Earth. Mar. Technol. Soc. J., 43, 151160, https://doi.org/10.4031/MTSJ.43.5.17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 1998: Deep water properties, velocities, and dynamics over ocean trenches. J. Mar. Res., 56, 329347, https://doi.org/10.1357/002224098321822339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinsey, J. C., R. M. Eustice, and L. L. Whitcomb, 2006: A survey of underwater vehicle navigation: Recent advances and new challenges. Seventh Conf. of Manoeuvring and Control of Marine Craft, Lisbon, Portugal, IFAC, 12 pp., http://141.212.194.179/publications/jkinsey-2006a.pdf.

  • Kyo, M., E. Hiyazaki, S. Tsukioka, H. Ochi, Y. Amitani, T. Tsuchiya, T. Aoki, and S. Takagawa, 1995: The sea trial of “Kaiko,” the full ocean depth research ROV. OCEANS ’95, San Diego, CA, IEEE, 1991–1996, https://doi.org/10.1109/OCEANS.1995.528882.

    • Crossref
    • Export Citation
  • Leonard, N. E., D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien, and F. Zhang, 2010: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot., 27, 718740, https://doi.org/10.1002/rob.20366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 2007: Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D, 230, 172196, https://doi.org/10.1016/j.physd.2007.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linley, T. D., M. E. Gerringer, P. H. Yancey, J. C. Drazen, C. L. Weinstock, and A. J. Jamieson, 2016: Fishes of the hadal zone including new species, in situ observations and depth records of liparidae. Deep-Sea Res. I, 114, 99110, https://doi.org/10.1016/j.dsr.2016.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandić, F., N. Mišković, N. Palomeras, M. Carreras, and G. Vallicrosa, 2016: Mobile beacon control algorithm that ensures observability in single range navigation. IFAC-PapersOnLine, 49, 4853, https://doi.org/10.1016/j.ifacol.2016.10.320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon-based circulation age of the world oceans. J. Geophys. Res., 112, C09004, https://doi.org/10.1029/2007JC004095.

  • Millard, R. C., and K. Yang, 1993: CTD calibration and processing methods used at Woods Hole Oceanographic Institution. Woods Hole Oceanographic Institution Tech. Rep., 107 pp.

    • Crossref
    • Export Citation
  • Momma, H., and Coauthors, 2004: Loss of the full ocean depth ROV Kaiko—Part 1: ROV Kaiko—A review. 14th Int. Offshore and Polar Engineering Conf., Toulon, France, International Society of Offshore and Polar Engineers, 191–193.

  • Nunoura, T., and Coauthors, 2015: Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. USA, 112, E1230–E1236, https://doi.org/10.1073/pnas.1421816112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A., G. Johnson, and J. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peoples, L. M., and Coauthors, 2018: Vertically distinct microbial communities in the Mariana and Kermadec Trenches. PLOS ONE, 13, e0195102, https://doi.org/10.1371/journal.pone.0195102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peoples, L. M., M. Norenberg, D. Price, M. McGoldrick, M. Novotny, A. Bochdansky, and D. H. Bartlett, 2019: A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions. Deep-Sea Res. I, 143, 5057, https://doi.org/10.1016/j.dsr.2018.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popa, D. O., A. C. Sanderson, R. J. Komerska, S. S. Mupparapu, D. R. Blidberg, and S. G. Chappel, 2004: Adaptive sampling algorithms for multiple autonomous underwater vehicles. 2004 IEEE/OES Autonomous Underwater Vehicles, Sebasco, ME, IEEE, 108–118, https://doi.org/10.1109/AUV.2004.1431201.

    • Crossref
    • Export Citation
  • Porter, M. B., 2011: The BELLHOP manual and user’s guide: Preliminary draft. Heat, Light, and Sound Research, Inc., Tech. Doc., 57 pp., https://oalib-acoustics.org/AcousticsToolbox/Bellhop-2010-1.pdf.

  • Schmidt, W. E., and E. Siegel, 2011: Free descent and on bottom ADCM measurements in the Puerto Rico Trench, 19.77°N, 67.40°W. Deep-Sea Res. I, 58, 970977, https://doi.org/10.1016/j.dsr.2011.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sea-Bird, 2014: SBE 43 dissolved oxygen (DO) sensor—Hysteresis corrections. Sea-Bird Application Note 64-3, 8 pp.

  • Showstack, R., 2014: Unmanned research vessel lost on deep sea dive. Eos, Trans. Amer. Geophys. Union, 95, 168, https://doi.org/10.1002/2014EO200004.

    • Search Google Scholar
    • Export Citation
  • Stutters, L., H. Liu, C. Tiltman, and D. J. Brown, 2008: Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst. Man Cybern., 38C, 581589, https://doi.org/10.1109/TSMCC.2008.919147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taira, K., S. Kitagawa, T. Yamashiro, and D. Yanagimoto, 2004: Deep and bottom currents in the Challenger Deep, Mariana Trench, measured with super-deep current meters. J. Oceanogr., 60, 919926, https://doi.org/10.1007/s10872-005-0001-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarn, J., L. M. Peoples, K. Hardy, J. Cameron, and D. H. Bartlett, 2016: Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front. Microbiol., 7, 665, https://doi.org/10.3389/fmicb.2016.00665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNOLS, 2015: UNOLS rope and cable safe working standards. Research vessel safety standards, 10th ed., University-National Oceanographic Laboratory Systems Doc., A-1–A-21.

  • Vaganay, J., P. Baccou, and B. Jouvencel, 2000: Homing by acoustic ranging to a single beacon. OCEANS 2000, Providence, RI, IEEE, 1457–1462, https://doi.org/10.1109/OCEANS.2000.881809.

    • Crossref
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2016: Convective mixing by internal waves in the Puerto Rico Trench. J. Mar. Res., 74, 161173, https://doi.org/10.1357/002224016819594809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N., 1997: Zoogeography of the abyssal and hadal zones. Adv. Mar. Biol., 32, 325387, https://doi.org/10.1016/S0065-2881(08)60019-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yilmaz, N. K., C. Evangelinos, P. F. J. Lermusiaux, and N. M. Patrikalakis, 2008: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J. Oceanic Eng., 33, 522537, https://doi.org/10.1109/JOE.2008.2002105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, H., 2009: Fundamentals of underwater vehicle hardware and their applications. Underwater Vehicles, A. V. Inzartsev, Ed., InTech, 557–582.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 322 0 0
Full Text Views 2572 1894 77
PDF Downloads 838 196 15