Evaluation and Validation of HF Radar Swell and Wind-Wave Inversion Method

Zaid R. Al-Attabi aSchool of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina
bMarine Science Center, University of Basrah, Basrah, Iraq
cDepartment of Coastal Studies, East Carolina University, Wanchese, North Carolina

Search for other papers by Zaid R. Al-Attabi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3753-8552
,
George Voulgaris aSchool of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina

Search for other papers by George Voulgaris in
Current site
Google Scholar
PubMed
Close
, and
Daniel C. Conley dSchool of Biological and Marine Sciences, Plymouth University, Plymouth, United Kingdom

Search for other papers by Daniel C. Conley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An examination of the applicability and accuracy of the empirical wave inversion method in the presence of swell waves is presented. The ability of the method to invert Doppler spectra to wave directional spectra and bulk wave parameters is investigated using 1-month data from a 12-MHz Wellen Radar (WERA) high-frequency (HF) radar system and in situ data from a wave buoy. Three different swell inversion models are evaluated from Lipa et al. (LPM), from Wang et al. (WFG), and empirical (EMP), an empirical approach introduced in this study. The swell inversions were carried out using two different scenarios: 1) a single beam from a single radar site and two beams from a single radar site, and 2) two beams from two sites (a single beam per site) intersecting each other at the buoy location. The LPM method utilizing two beams from two different sites was found to provide the best estimations of swell parameters (swell height RMS error: 0.24 m) and showed a good correlation with the partitioned swell in situ values. For the wind-wave inversion, the empirical method presented here is used with an empirical coefficient of 0.3, which seems to be suitable for universal application for all radar operating frequencies. The inverted swell parameters are used to create a swell spectrum that is combined with the inverted wind-wave spectrum to create a full directional wave spectrum. The wave inversion method presented in this study although empirical does not require calibration with in situ data and can be applied to any beam-forming system and operating frequency.

Al-Attabi’s current affiliation: Department of Coastal Studies, East Carolina University, Wanchese, North Carolina.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zaid R. Al-Attabi, zrahman@geol.sc.edu

Abstract

An examination of the applicability and accuracy of the empirical wave inversion method in the presence of swell waves is presented. The ability of the method to invert Doppler spectra to wave directional spectra and bulk wave parameters is investigated using 1-month data from a 12-MHz Wellen Radar (WERA) high-frequency (HF) radar system and in situ data from a wave buoy. Three different swell inversion models are evaluated from Lipa et al. (LPM), from Wang et al. (WFG), and empirical (EMP), an empirical approach introduced in this study. The swell inversions were carried out using two different scenarios: 1) a single beam from a single radar site and two beams from a single radar site, and 2) two beams from two sites (a single beam per site) intersecting each other at the buoy location. The LPM method utilizing two beams from two different sites was found to provide the best estimations of swell parameters (swell height RMS error: 0.24 m) and showed a good correlation with the partitioned swell in situ values. For the wind-wave inversion, the empirical method presented here is used with an empirical coefficient of 0.3, which seems to be suitable for universal application for all radar operating frequencies. The inverted swell parameters are used to create a swell spectrum that is combined with the inverted wind-wave spectrum to create a full directional wave spectrum. The wave inversion method presented in this study although empirical does not require calibration with in situ data and can be applied to any beam-forming system and operating frequency.

Al-Attabi’s current affiliation: Department of Coastal Studies, East Carolina University, Wanchese, North Carolina.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zaid R. Al-Attabi, zrahman@geol.sc.edu
Save
  • Alattabi, Z. R., D. Cahl, and G. Voulgaris, 2019: Swell and wind wave inversion using a single very high frequency (VHF) radar. J. Atmos. Oceanic Technol., 36, 9871013, https://doi.org/10.1175/JTECH-D-18-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alattabi, Z. R., D. Cahl, and G. Voulgaris, 2021: Swell Wave Radar Inversion Code (SWaveRIC). Zenodo, accessed 4 August 2021, https://doi.org/10.5281/zenodo.5159956.

    • Crossref
    • Export Citation
  • Barrick, D. E., 1971: Theory of HF and VHF propagation across the rough sea, 1, The effective surface impedance for a slightly rough highly conducting medium at grazing incidence. Radio Sci., 6, 517526, https://doi.org/10.1029/RS006i005p00517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1972: Remote sensing of sea state by radar. Ocean 72-IEEE Int. Conf. on Engineering in the Ocean Environment, Newport, RI, IEEE, 186–192, https://doi.org/10.1109/OCEANS.1972.1161190.

    • Crossref
    • Export Citation
  • Barrick, D. E., 1977a: The ocean wave height nondirectional spectrum from inversion of the HF sea-echo Doppler spectrum. Remote Sens. Environ., 6, 201227, https://doi.org/10.1016/0034-4257(77)90004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1977b: Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci., 12, 415424, https://doi.org/10.1029/RS012i003p00415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., and B. Weber, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part II: Interpretation and applications. J. Phys. Oceanogr., 7, 1121, https://doi.org/10.1175/1520-0485(1977)007<0011:OTNTFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bathgate, J. S., M. L. Heron, and A. Prytz, 2006: A method of swell wave parameter extraction from HF ocean surface radar spectra. IEEE J. Oceanic Eng., 31, 812818, https://doi.org/10.1109/JOE.2006.886237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J., 2001: ECMWF wave model products. ECMWF Newsletter, No. 91, ECMWF, Reading, United Kingdom, 9–15, https://www.ecmwf.int/sites/default/files/elibrary/2001/14633-newsletter-no91-summer-2001.pdf.

  • Cahl, D., and G. Voulgaris, 2019: WavePART V.1.1 MATLAB(r) software for the partition of directional ocean wave spectra. Zenodo, accessed 13 April 2019, https://doi.org/10.5281/zenodo.2638501.

    • Crossref
    • Export Citation
  • Chen, Z., C. Zezong, J. Yanni, F. Lingang, and Z. Gengfei, 2013: Exploration and validation of wave-height measurement using multifrequency HF radar. J. Atmos. Oceanic Technol., 30, 21892202, https://doi.org/10.1175/JTECH-D-12-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., L. Zhang, C. Zhao, X. Chen, and J. Zhong, 2015: A practical method of extracting wind sea and swell from directional wave spectrum. J. Atmos. Oceanic Technol., 32, 21472159, https://doi.org/10.1175/JTECH-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, J. H., A. J. Plueddemann, and S. M. Faluotico, 2006: Extracting wind sea and swell from directional wave spectra derived from a bottom-mounted ADCP. Woods Hole Oceanographic Institution Tech Rep. WHOI-2006-13, 41 pp., https://doi.org/10.1575/1912/1372.

    • Crossref
    • Export Citation
  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681682, https://doi.org/10.1038/175681a0.

  • De Farias, E. G., J. A. Lorenzzetti, and B. Chapron, 2012: Swell and wind-sea distributions over the mid-latitude and tropical North Atlantic for the period 2002–2008. Int. J. Oceanogr., 2012, 306723, https://doi.org/10.1155/2012/306723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated ocean waves. Proc. Roy. Soc. London, A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Earle, M., 1984: Development of algorithms for separation of sea and swell. National Data Buoy Center Tech. Rep. MEC-87-1, 53 pp.

  • Essen, H.-H., K.-W. Gurgel, and T. Schlick, 1999: Measurement of ocean wave height and direction by means of HF radar: An empirical approach. Dtsch. Hydrogr. Z., 51, 369383, https://doi.org/10.1007/BF02764161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D. M., H. C. Graber, J. D. Paduan, and D. E. Barrick, 1997: Mapping wind direction with HF radar. Oceanography, 10, 9395, https://doi.org/10.5670/oceanog.1997.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., and R. Hervey, 2002: Improved estimates of swell from moored buoys. Fourth Int. Symp. on Ocean Wave Measurement and Analysis, San Francisco, CA, American Society of Civil Engineers, 387–393, https://doi.org/10.1061/40604(273)40.

    • Crossref
    • Export Citation
  • Gill, E. W., 1990: An algorithm for the extraction of ocean wave parameters from wide beam HF radar (CODAR) backscatter. Ph.D. dissertation, Memorial University of Newfoundland, 267 pp.

  • Gomez, R., T. Helzel, L. Wyatt, G. Lopez, D. Conley, N. Thomas, S. Smet, and G. Sicot, 2015: Estimation of wave parameters from HF radar using different methodologies and compared with wave buoy measurements at the Wave Hub. OCEANS 2015—Genova, Genoa, Italy, IEEE, https://doi.org/10.1109/OCEANS-Genova.2015.7271477.

    • Crossref
    • Export Citation
  • Gurgel, K.-W., H. H. Essen, and T. Schlick, 2006: An empirical method to derive ocean waves from second-order Bragg scattering: Prospects and limitations. IEEE J. Oceanic Eng., 31, 804811, https://doi.org/10.1109/JOE.2006.886225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and D. W. Heinold, 1985: Development and application of a simple method for evaluating air quality models. American Petroleum Institute Publ. 4409, 38 pp.

  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18, 277293, https://doi.org/10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, D. E., M. Dunckel, and J. Ewing, 1980: Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10, 12641280, https://doi.org/10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1971: Determination of ocean wave spectra from Doppler radio return from the sea surface. Nat. Phys. Sci., 229, 1617, https://doi.org/10.1038/physci229016a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbers, T., S. Elgar, and R. Guza, 1999: Directional spreading of waves in the nearshore. J. Geophys. Res., 104, 76837693, https://doi.org/10.1029/1998JC900092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, M., and R. Rose, 1986: On the application of HF ocean radar to the observation of temporal and spatial changes in wind direction. IEEE J. Oceanic Eng., 11, 210218, https://doi.org/10.1109/JOE.1986.1145173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, M., and A. Prytz, 2002: Wave height and wind direction from the HF coastal ocean surface radar. Can. J. Remote Sens., 28, 385393, https://doi.org/10.5589/m02-031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, M., P. Dexter, and B. McGann, 1985: Parameters of the air-sea interface by high-frequency ground-wave Doppler radar. Mar. Freshwater Res., 36, 655670, https://doi.org/10.1071/MF9850655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, S., and M. Heron, 1998: A comparison of algorithms for extracting significant wave height from HF radar ocean backscatter spectra. J. Atmos. Oceanic Technol., 15, 11571163, https://doi.org/10.1175/1520-0426(1998)015<1157:ACOAFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hessner, K., and J. L. Hanson, 2010: Extraction of coastal wavefield properties from X-band radar. 2010 IEEE Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 43264329, https://doi.org/10.1109/IGARSS.2010.5650134.

    • Crossref
    • Export Citation
  • Hildebrand, P. H., and R. Sekhon, 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13, 808811, https://doi.org/10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 1996: Nonlinear inversion of the integral equation to estimate ocean wave spectra from HF radar. Radio Sci., 31, 2539, https://doi.org/10.1029/95RS02439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 2016: Ocean wave parameters and spectrum estimated from single and dual high-frequency radar systems. Ocean Dyn., 66, 10651085, https://doi.org/10.1007/s10236-016-0978-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, R., and J. Walsh, 1993: Measurement of ocean wave spectra using narrow-beam HE radar. IEEE J. Oceanic Eng., 18, 296305, https://doi.org/10.1109/JOE.1993.236368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivonin, D. V., V. I. Shrira, and P. Broche, 2006: On the singular nature of the second-order peaks in HF radar sea echo. IEEE J. Oceanic Eng., 31, 751767, https://doi.org/10.1109/JOE.2006.886080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., D. L. Cahl, S. C. Crosby, and G. Voulgaris, 2017: Bulk versus spectral wave parameters: Implications on stokes drift estimates, regional wave modeling, and HF radars applications. J. Phys. Oceanogr., 47, 14131431, https://doi.org/10.1175/JPO-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., 1977: Derivation of directional ocean-wave spectra by integral inversion of second-order radar echoes. Radio Sci., 12, 425434, https://doi.org/10.1029/RS012i003p00425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., and D. E. Barrick, 1980: Methods for the extraction of long period ocean wave parameters from narrow beam HF radar sea echo. Radio Sci., 15, 843853, https://doi.org/10.1029/RS015i004p00843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., D. E. Barrick, and J. W. Maresca, 1981: HF radar measurements of long ocean waves. J. Geophys. Res., 86, 40894102, https://doi.org/10.1029/JC086iC05p04089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, A., and D. Trizna, 1973: Mapping of North Atlantic winds by HF radar sea backscatter interpretation. IEEE Trans. Antennas Propag., 21, 680685, https://doi.org/10.1109/TAP.1973.1140557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1963: The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid Mech., 17, 459480, https://doi.org/10.1017/S0022112063001452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, G., and D. C. Conley, 2019: Comparison of HF radar fields of directional wave spectra against in situ measurements at multiple locations. J. Mar. Sci. Eng., 7, 271, https://doi.org/10.3390/jmse7080271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, G., D. C. Conley, and D. Greaves, 2016: Calibration, validation, and analysis of an empirical algorithm for the retrieval of wave spectra from HF radar sea echo. J. Atmos. Oceanic Technol., 33, 245261, https://doi.org/10.1175/JTECH-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maresca, J. W., Jr., and T. M. Georges, 1980: Measuring RMS wave height and the scalar ocean wave spectrum with HF skywave radar. J. Geophys. Res., 85, 27592771, https://doi.org/10.1029/JC085iC05p02759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mentaschi, L., G. Besio, F. Cassola, and A. Mazzino, 2013: Problems in RMSE-based wave model validations. Ocean Modell., 72, 5358, https://doi.org/10.1016/j.ocemod.2013.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleditch, A., 2013: Spatiotemporal spectral averaging of high frequency radar wave data. ACORN Rep. 2013-3, 45 pp., http://imos.org.au/fileadmin/user_upload/shared/ACORN/reports/2013-3-Spatiotemporal-Spectral-Averaging-of-High-Frequency-Radar-Wave-Data.pdf.

  • Paduan, J. D., and L. K. Rosenfeld, 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res., 101, 20 66920 686, https://doi.org/10.1029/96JC01663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1966: The Dynamics of the Upper Ocean. Cambridge University Press, 261 pp.

  • Pingree, R. D., 1980: Physical oceanography of the Celtic Sea and English Channel. The North-West European Shelf Seas: The Sea Bed and the Sea in Motion II. Physical and Chemical Oceanography, and Physical Resources, F. T. Banner, M. B. Collins, and K. S. Massie, Eds., Elsevier Oceanography Series, Vol. 24, 415–465, https://doi.org/10.1016/S0422-9894(08)71358-8.

    • Crossref
    • Export Citation
  • Quentin, C. G., 2002: Etude de la surface océanique, de sa signature radar et de ses interactions avec les flux turbulents de quantité de mouvement dans le cadre de l’experience FETCH (in French). Ph.D. thesis, Université Pierre et Marie Curie, 264 pp., https://tel.archives-ouvertes.fr/tel-00010934/document.

  • Ramos, R. J., H. C. Graber, and B. K. Haus, 2009: Observation of wave energy evolution in coastal areas using HF radar. J. Atmos. Oceanic Technol., 26, 18911909, https://doi.org/10.1175/2009JTECHO631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saviano, S., A. Kalampokis, E. Zambianchi, and M. Uttieri, 2019: A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Oper. Oceanogr, 12, 115, https://doi.org/10.1080/1755876X.2019.1565853.

    • Search Google Scholar
    • Export Citation
  • Shen, C., E. Gill, and W. Huang, 2012: Simulation of HF radar cross sections for swell contaminated seas. Oceans 2012, Hampton Roads, VA, IEEE, 1–5, https://doi.org/10.1109/OCEANS.2012.6404836.

    • Crossref
    • Export Citation
  • Stewart, R. H., 1971: Higher order scattering of radio waves from the sea. 1971 Antennas and Propagation Society Int. Symp., Los Angeles, CA, IEEE, 190–193, https://doi.org/10.1109/APS.1971.1150935.

    • Crossref
    • Export Citation
  • Stewart, R. H., and J. R. Barnum, 1975: Radio measurements of oceanic winds at long ranges: An evaluation. Radio Sci., 10, 853857, https://doi.org/10.1029/RS010i010p00853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracy, B., E. Devaliere, J. Hanson, T. Nicolini, and H. Tolman, 2007: Wind sea and swell delineation for numerical wave modeling. 10th Int. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards Symp., Oahu, HI, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology, P12, http://www.waveworkshop.org/10thWaves/Papers/10th_wave_paper_tracy_dhnt.pdf.

  • Voulgaris, G., N. Kumar, K.-W. Gurgel, J. C. Warner, and J. H. List, 2011: 2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station. 2011 IEEE/OES 10th Current, Waves and Turbulence Measurements, Monterey, CA, IEEE, 57–65, https://doi.org/10.1109/CWTM.2011.5759525.

    • Crossref
    • Export Citation
  • Wang, W., P. Forget, and C. Guan, 2014: Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France). Ocean Dyn., 64, 14471456, https://doi.org/10.1007/s10236-014-0759-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Forget, and C. Guan, 2016: Inversion and assessment of swell wave heights from HF radar spectra in the Iroise Sea. Ocean Dyn., 66, 527538, https://doi.org/10.1007/s10236-016-0941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, B. L., and D. E. Barrick, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part I: Derivations. J. Phys. Oceanogr., 7, 310, https://doi.org/10.1175/1520-0485(1977)007<0003:OTNTFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 1986: The measurement of the ocean wave directional spectrum from HF radar Doppler spectra. Radio Sci., 21, 473485, https://doi.org/10.1029/RS021i003p00473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 1990: A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. Int. J. Remote Sens., 11, 14811494, https://doi.org/10.1080/01431169008955106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 1999: HF radar measurements of the development of the directional wave spectrum. The Wind-Driven Air-Sea Interface, M. L. Banner, Ed., School of Mathematics, University of New South Wales, 433–440.

  • Wyatt, L. R., 2000: Limits to the inversion of HF radar backscatter for ocean wave measurement. J. Atmos. Oceanic Technol., 17, 16511666, https://doi.org/10.1175/1520-0426(2000)017<1651:LTTIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 2002: An evaluation of wave parameters measured using a single HF radar system. Can. J. Remote Sens., 28, 205218, https://doi.org/10.5589/m02-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 2005: HF radar for coastal monitoring—A comparison of methods and measurements. Europe Oceans 2005, Brest, France, IEEE, 314–318, https://doi.org/10.1109/OCEANSE.2005.1511732.

    • Crossref
    • Export Citation
  • Wyatt, L. R., 2017: Wave power measurements in the Celtic Sea using HF radar. OCEANS 2017-Aberdeen, Aberdeen, United Kingdom, IEEE, 1–4, https://doi.org/10.1109/OCEANSE.2017.8084723.

    • Crossref
    • Export Citation
  • Wyatt, L. R., J. J. Green, A. Middleditch, M. D. Moorhead, J. Howarth, M. Holt, and S. Keogh, 2006: Operational wave, current, and wind measurements with the Pisces HF radar. IEEE J. Oceanic Eng., 31, 819834, https://doi.org/10.1109/JOE.2006.88838.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., J. J. Green, A. Middleditch, M. D. Moorhead, J. Howarth, M. Holt, and S. Keogh, 2009: Signal sampling impacts on HF radar wave measurement. J. Atmos. Oceanic Technol., 26, 793805, https://doi.org/10.1175/2008JTECHO614.1.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., J. J. Green, and A. Middleditch, 2011: HF radar data quality requirements for wave measurement. Coast. Eng., 58, 327336, https://doi.org/10.1016/j.coastaleng.2010.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., and L. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Eng., 29, 4778, https://doi.org/10.1016/S0378-3839(96)00006-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and E. W. Gill, 2006: Extraction of ocean wave spectra from simulated noisy bistatic high-frequency radar data. IEEE J. Oceanic Eng., 31, 779796, https://doi.org/10.1109/JOE.2006.886201.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 452 0 0
Full Text Views 2702 2020 79
PDF Downloads 688 161 8