The Three-Cornered Hat Method for Estimating Error Variances of Three or More Atmospheric Datasets. Part II: Evaluating Radio Occultation and Radiosonde Observations, Global Model Forecasts, and Reanalyses

Therese Rieckh aCOSMIC Program Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Therese Rieckh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4104-7177
,
Jeremiah P. Sjoberg aCOSMIC Program Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeremiah P. Sjoberg in
Current site
Google Scholar
PubMed
Close
, and
Richard A. Anthes aCOSMIC Program Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard A. Anthes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We apply the three-cornered hat (3CH) method to estimate refractivity, bending angle, and specific humidity error variances for a number of datasets widely used in research and/or operations: radiosondes, radio occultation (COSMIC, COSMIC-2), NCEP global forecasts, and nine reanalyses. We use a large number and combinations of datasets to obtain insights into the impact of the error correlations among different datasets that affect 3CH estimates. Error correlations may be caused by actual correlations of errors, representativeness differences, or imperfect collocation of the datasets. We show that the 3CH method discriminates among the datasets and how error statistics of observations compare to state-of-the-art reanalyses and forecasts, as well as reanalyses that do not assimilate satellite data. We explore results for October and November 2006 and 2019 over different latitudinal regions and show error growth of the NCEP forecasts with time. Because of the importance of tropospheric water vapor to weather and climate, we compare error estimates of refractivity for dry and moist atmospheric conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Therese Rieckh, trieckh@gmail.com

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-19-0217.1.

Abstract

We apply the three-cornered hat (3CH) method to estimate refractivity, bending angle, and specific humidity error variances for a number of datasets widely used in research and/or operations: radiosondes, radio occultation (COSMIC, COSMIC-2), NCEP global forecasts, and nine reanalyses. We use a large number and combinations of datasets to obtain insights into the impact of the error correlations among different datasets that affect 3CH estimates. Error correlations may be caused by actual correlations of errors, representativeness differences, or imperfect collocation of the datasets. We show that the 3CH method discriminates among the datasets and how error statistics of observations compare to state-of-the-art reanalyses and forecasts, as well as reanalyses that do not assimilate satellite data. We explore results for October and November 2006 and 2019 over different latitudinal regions and show error growth of the NCEP forecasts with time. Because of the importance of tropospheric water vapor to weather and climate, we compare error estimates of refractivity for dry and moist atmospheric conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Therese Rieckh, trieckh@gmail.com

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-19-0217.1.

Save
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, https://doi.org/10.5194/amt-4-1077-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and T. Rieckh, 2018: Estimating observation and model error variances using multiple data sets. Atmos. Meas. Tech., 11, 42394260, https://doi.org/10.5194/amt-11-4239-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., 2020: Revised GNSS-RO observation uncertainties in the Met Office NWP system. Quart. J. Roy. Meteor. Soc., 146, 22742296, https://doi.org/10.1002/qj.3791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butterworth, S., 1930: On the theory of filter amplifiers. Wireless Eng., 7, 536541.

  • Chen, S.-Y., C.-Y. Liu, C.-Y. Huang, S.-C. Hsu, H.-W. Li, P.-H. Lin, J.-P. Cheng, and C.-Y. Huang, 2021: An analysis study of FORMOSAT-7/COSMIC-2 radio occultation data in the troposphere. Remote Sens., 13, 717, https://doi.org/10.3390/rs13040717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirksen, R. J., M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel, 2014: Reference quality upper air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech., 7, 44634490, https://doi.org/10.5194/amt-7-4463-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., F. Xie, C. Ao, and R. A. Anthes, 2020: Ducting and biases of GPS radio occultation bending angle and refractivity in the moist lower troposphere. J. Atmos. Oceanic Technol., 37, 10131025, https://doi.org/10.1175/JTECH-D-19-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilpin, S., T. Rieckh, and R. Anthes, 2018: Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons. Atmos. Tech. Meas., 11, 25672582, https://doi.org/10.5194/amt-11-2567-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilpin, S., R. A. Anthes, and S. Sokolovskiy, 2019: Sensitivity of forward-modeled bending angles to vertical interpolation of refractivity from radio occultation data assimilation. Mon. Wea. Rev., 147, 269289, https://doi.org/10.1175/MWR-D-18-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, https://doi.org/10.1175/JCLI-D-11-00668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., J. R. Eyre, M. Hamrud, and J.-N. Thépaut, 2007: Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators. Quart. J. Roy. Meteor. Soc., 133, 12131227, https://doi.org/10.1002/qj.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., M. Liao, A. Horanji, and A. Simmons, 2017: Impact of GPSRO on NWP and climate reanalyses. Joint COSMIC 10th Data Users’ Workshop and IROWG-6 Meeting, Estes Park, CO, UCAR, https://cpaess.ucar.edu/sites/default/files/meetings/2017/cosmic/presentations/irowg_2017_sbh.pdf.

  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ECMWF ERA Rep. Series 27, 65 pp., https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Ho, S.-P., and Coauthors, 2020: Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data. Remote Sens., 12, 4099, https://doi.org/10.3390/rs12244099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Tech. Memo. 807, 69 pp., https://doi.org/10.21957/0nje0wpsa.

    • Crossref
    • Export Citation
  • Ingleby, B., and Coauthors, 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 21492161, https://doi.org/10.1175/BAMS-D-15-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishore, P., and Coauthors, 2011: Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets. J. Atmos. Sol.-Terr. Phys., 73, 18491860, https://doi.org/10.1016/j.jastp.2011.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., 1989: Representativeness errors for radiosonde observations. Quart. J. Roy. Meteor. Soc., 115, 673700, https://doi.org/10.1002/qj.49711548713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., H. Endo, Y. Ota, S. K. H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only. SOLA, 10, 7882, https://doi.org/10.2151/sola.2014-016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., W. Schreiner, J. Wang, D. Rossiter, and Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817, https://doi.org/10.1029/2004GL021443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995: Observing tropospheric water vapor by radio occultation using the global positioning system. Geophys. Res. Lett., 22, 23652368, https://doi.org/10.1029/95GL02127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 10, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladstädter, F., A. K. Steiner, M. Schwärz, and G. Kirchengast, 2015: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos. Meas. Tech., 8, 18191834, https://doi.org/10.5194/amt-8-1819-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 13671386, https://doi.org/10.1256/003590002320373337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, https://doi.org/10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publ. 94-18, 147 pp.

  • Nash, J., 2015: Measurement of upper-air pressure, temperature and humidity. WMO IOM Rep. 121, 87 pp., https://library.wmo.int/doc_num.php?explnum_id=7366.

  • O’Carroll, A. G., J. R. Eyre, and R. W. Saunders, 2008: Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. J. Atmos. Oceanic Technol., 25, 11971207, https://doi.org/10.1175/2007JTECHO542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and J. Joiner, 2004: Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing. Quart. J. Roy. Meteor. Soc., 130, 27872805, https://doi.org/10.1256/qj.03.228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, https://doi.org/10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., and R. Anthes, 2018: Evaluating two methods of estimating error variances using simulated data sets with known errors. Atmos. Meas. Tech., 11, 43094325, https://doi.org/10.5194/amt-11-4309-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7, 39473958, https://doi.org/10.5194/amt-7-3947-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruston, B., and S. Healy, 2020: Forecast impact of FORMOSAT-7/COSMIC-2 GNSS radio occultation measurements. Atmos. Sci. Lett., 22, e1019, https://doi.org/10.1002/asl.1019.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., and Coauthors, 2020: Tropical temperature variability in the UTLS: New insights from GPS radio occultation observations. J. Climate, 34, 28132838, https://doi.org/10.1175/JCLI-D-20-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W. S., and Coauthors, 2020: COSMIC-2 radio occultation—First results. Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., B. Sun, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, https://doi.org/10.1029/2010JD014891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 2006: Observations, assimilation and the improvement of global weather prediction—Some results from operational forecasting and ERA-40. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 428–458, https://doi.org/10.1017/CBO9780511617652.017.

    • Crossref
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, https://doi.org/10.1256/003590002321042135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., R. A. Anthes, and T. Rieckh, 2021: The three-cornered hat method for estimating error variances of three or more atmospheric datasets. Part I: Overview and evaluation. J. Atmos. Oceanic Technol., 38, 555572, https://doi.org/10.1175/JTECH-D-19-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., and S. Weintraub, 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41, 10351037, https://doi.org/10.1109/JRPROC.1953.274297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci., 38, 1058, https://doi.org/10.1029/2002RS002728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt, 2010: Comparing radiosonde and cosmic atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, https://doi.org/10.1029/2010JD014457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., E. R. Kursinski, B. M. Herman, E. M. Lane, and D. E. Flittner, 2005: A refractive index mapping operator for assimilation of occultation data. Mon. Wea. Rev., 133, 26502668, https://doi.org/10.1175/MWR3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tradowsky, J. S., C. P. Burrows, S. B. Healy, and J. R. Eyre, 2017: A new method to correct radiosonde temperature biases using radio occultation data. J. Appl. Meteor. Climatol., 56, 16431661, https://doi.org/10.1175/JAMC-D-16-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., G. Nedoluha, G. Kirchengast, and S. Bühler, 2003: One-dimensional variational (1-D Var) retrieval of temperature, water vapor, and a reference pressure from radio occultation measurements: A sensitivity analysis. J. Geophys. Res., 108, 4337, https://doi.org/10.1029/2002JD002908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ware, R., and Coauthors, 1996: GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., 2018: A variational regularization of Abel transform for GPS radio occultation. Atmos. Meas. Tech., 11, 19471969, https://doi.org/10.5194/amt-11-1947-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., and Y.-H. Kuo, 2014: Advanced stratospheric data processing of radio occultation with a variational combination for multifrequency GNSS signals. J. Geophys. Res. Atmos., 119, 11 01111 039, https://doi.org/10.1002/2014JD022204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., and Y.-H. Kuo, 2015: A perspective on the fundamental quality of GPS radio occultation data. Atmos. Meas. Tech., 8, 42814294, https://doi.org/10.5194/amt-8-4281-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, E. R. Kursinski, A. J. Mannucci, and S. Syndergaard, 2010: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Sokolovskiy, W. S. Schreiner, and D. Hunt, 2019: Representation of vertical atmospheric structures by radio occultation observations in the upper troposphere and lower stratosphere: Comparison to high-resolution radiosonde profiles. J. Atmos. Oceanic Technol., 36, 655670, https://doi.org/10.1175/JTECH-D-18-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., P. Gao, and X. Xu, 2014: Variations of the tropopause over different latitude bands observed using COSMIC radio occultation bending angles. IEEE Trans. Geosci. Remote Sens., 52, 23392349, https://doi.org/10.1109/TGRS.2013.2259632.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 315 0 0
Full Text Views 3379 2802 89
PDF Downloads 658 191 19