Flow-Dependent Modeling of Acoustic Propagation Based on the DG-FEM Method

Zichen Wang aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Zichen Wang in
Current site
Google Scholar
PubMed
Close
,
Jian Xu aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Jian Xu in
Current site
Google Scholar
PubMed
Close
,
Xuefeng Zhang aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Xuefeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Can Lu aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Can Lu in
Current site
Google Scholar
PubMed
Close
,
Kangkang Jin aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Kangkang Jin in
Current site
Google Scholar
PubMed
Close
, and
Yinquan Zhang bKey Laboratory of Marine Environmental Information Technology, Tianjin, China

Search for other papers by Yinquan Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper proposes a two-dimensional underwater sound propagation model using the discontinuous Galerkin finite-element method (DG-FEM) to investigate the influence of current on sound propagation. The acoustic field is calculated by the convected wave equation with the current speed parameter. Based on the current speed data from an assimilation model, a two-dimensional coupled acoustic propagation model in the Fram Strait water area is established to observe the variability in propagation loss under different seasonal velocities in the real ocean environment. The transmission loss and signal time structure are examined. The results obtained in different source frequencies are also compared. It appears that the current velocity, time, and range variation all have an effect on underwater sound propagation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Xu, jian.xu@tju.edu.cn

Abstract

This paper proposes a two-dimensional underwater sound propagation model using the discontinuous Galerkin finite-element method (DG-FEM) to investigate the influence of current on sound propagation. The acoustic field is calculated by the convected wave equation with the current speed parameter. Based on the current speed data from an assimilation model, a two-dimensional coupled acoustic propagation model in the Fram Strait water area is established to observe the variability in propagation loss under different seasonal velocities in the real ocean environment. The transmission loss and signal time structure are examined. The results obtained in different source frequencies are also compared. It appears that the current velocity, time, and range variation all have an effect on underwater sound propagation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Xu, jian.xu@tju.edu.cn
Save
  • Athanassoulis, G. A., K. A. Belibassakis, D. Mitsoudis, N. Kampanis, and V. Dougalis, 2008: Coupled mode and finite element approximations of underwater sound propagation problems in general stratified environments. J. Comput. Acoust., 16, 83116, https://doi.org/10.1142/S0218396X08003506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beszczynska-Möeller, A., E. Fahrbach, U. Schauer, and E. Hansen, 2012: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69, 852863, https://doi.org/10.1093/icesjms/fss056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brekhovskikh, L. M., and O. A. Godin, 1990: Plane and Quasi-Plane Waves. Vol. I, Acoustics of Layered Media, Springer-Verlag, 240 pp.

    • Crossref
    • Export Citation
  • Brekhovskikh, L. M., and O. A. Godin, 1992: Point Sources and Bounded Beams. Vol. II, Acoustics of Layered Media, Springer-Verlag, 395 pp.

    • Crossref
    • Export Citation
  • Catalano, J., D. Turner, and J. Novak, 1987: User’s guide for RAM. 2nd ed. U.S. Environmental Protection Agency Doc., 203 pp.

  • Chen, X., M. Hong, W. Zhu, K. Mao, J. Ge, and S. Bao, 2019: The analysis of acoustic propagation characteristic affected by mesoscale cold-core vortex based on the UMPE model. Acoust. Aust., 47, 3349, https://doi.org/10.1007/s40857-019-00149-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., Y. Gao, F. Yan, T. Jin, and Z. Zhou, 2019: Delving into the two-dimensional structure of a cold Eddy east of Taiwan and its impact on acoustic propagation. Acoust. Aust., 47, 185193, https://doi.org/10.1007/s40857-019-00160-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cockburn, B., S. Hou, and C. W. Shu, 1990: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput., 54, 545581, https://doi.org/10.1090/S0025-5718-1990-1010597-0.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer-Verlag, 303–343.

    • Crossref
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • de Steur, L., E. Hansen, C. Mauritzen, A. Beszczynska-Moeller, and E. Fahrbach, 2014: Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009. Deep-Sea Res. I, 92, 2640, https://doi.org/10.1016/j.dsr.2014.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubey, R., and B. Biswas, 2016: An analysis on induced numerical oscillations by Lax-Friedrichs scheme. Differ. Equations Dyn. Syst., 25, 151168, https://doi.org/10.1007/s12591-016-0311-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, E., 1980: Geoacoustic models of the sea floor. J. Acoust. Soc. Amer., 68, 13131340, https://doi.org/10.1121/1.385100.

  • Hardin, J., J. Ristorcelli, and C. Tam, 1995: ICASE/LaRC workshop on benchmark problems in computational aeroacoustics (CAA). NASA Tech. Rep., 389 pp.

  • He, X., D. Yang, and Y. Zhou, 2014: A weighted Runge-Kutta discontinuous Galerkin method for wavefield modeling. Geophys. J. Int., 200, 33493354, https://doi.org/10.1190/segam2014-0579.1.

    • Search Google Scholar
    • Export Citation
  • Isakson, M. J., J. N. Piper, and A. R. McNeese, 2019: Measurements, metrics, and modeling of normal-incidence acoustic interaction with ocean sediment. IEEE J. Oceanic Eng., 44, 956971, https://doi.org/10.1109/JOE.2019.2907759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, F., M. Porter, and H. Schmidt, 2011: Computational Ocean Acoustics. Springer, 794 pp., https://doi.org/10.1007/978-1-4419-8678-8.

    • Crossref
    • Export Citation
  • Lamont-Doherty Core Repository, 1977: Archive of LDCR geosample data and information. NOAA National Centers for Environmental Information, accessed 22 November 2020, https://doi.org/10.7289/V5M61H7G.

    • Crossref
    • Export Citation
  • Marnela, M., B. Rudels, M. N. Houssais, A. Beszczynska-Möller, and P. B. Eriksson, 2013: Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Sci., 9, 499519, https://doi.org/10.5194/os-9-499-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostashev, V., 1997: Acoustics in Moving Inhomogeneous Media. CRC Press, 259 pp., https://doi.org/10.4324/9781482271843.

    • Crossref
    • Export Citation
  • Petrov, P. S., M. Ehrhardt, A. G. Tyshchenko, and P. N. Petrov, 2020: Wide-angle mode parabolic equations for the modelling of horizontal refraction in underwater acoustics and their numerical solution on unbounded domains. J. Sound Vib., 484, 115526, https://doi.org/10.1016/j.jsv.2020.115526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, A., 1990: Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Amer., 87, 22922299, https://doi.org/10.1121/1.399073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, M., 2011: The Bellhop manual and user’s guide: Preliminary draft. Heat, Light, and Sound Research, Inc., Doc., 57 pp.

  • Simon, B., M. Isakson, and M. Ballard, 2018: Modeling acoustic wave propagation and reverberation in an ice covered environment using finite element analysis. Proc. 175th Meeting of the Acoustical Society of America, Minneapolis, MN, Acoustical Society of America, 070002, https://doi.org/10.1121/2.0000842.

    • Crossref
    • Export Citation
  • Wekerle, C., Q. Wang, W. Appen, S. Danilov, V. Schourup-Kristensen, and T. Jung, 2017a: Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J. Geophys. Res. Oceans, 122, 83858405, https://doi.org/10.1002/2017JC012974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wekerle, C., Q. Wang, S. Danilov, V. Schourup-Kristensen, and W. Appen, 2017b: Atlantic water in the Nordic seas: Locally eddy-permitting ocean simulation in a global setup. J. Geophys. Res. Oceans, 122, 914940, https://doi.org/10.1002/2016JC012121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 200 0 0
Full Text Views 2829 2509 82
PDF Downloads 401 75 5