Using Radio Occultation to Detect Clouds in the Middle and Upper Troposphere

Jeana Mascio aAtmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Jeana Mascio in
Current site
Google Scholar
PubMed
Close
,
Stephen S. Leroy aAtmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Stephen S. Leroy in
Current site
Google Scholar
PubMed
Close
,
Robert P. d’Entremont aAtmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Robert P. d’Entremont in
Current site
Google Scholar
PubMed
Close
,
Thomas Connor aAtmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Thomas Connor in
Current site
Google Scholar
PubMed
Close
, and
E. Robert Kursinski bPlanetiQ, Golden, Colorado

Search for other papers by E. Robert Kursinski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radio occultation (RO) measurements have little direct sensitivity to clouds, but recent studies have shown that they may have an indirect sensitivity to thin, high clouds that are difficult to detect using conventional passive space-based cloud sensors. We implement two RO-based cloud detection (ROCD) algorithms for atmospheric layers in the middle and upper troposphere. The first algorithm is based on the methodology of a previous study, which explored signatures caused by upper-tropospheric clouds in RO profiles according to retrieved relative humidity, temperature lapse rate, and gradients in log-refractivity (ROCD-P), and the second is based on inferred relative humidity alone (ROCD-M). In both, atmospheric layers are independently predicted as cloudy or clear based on observational data, including high-performance RO retrievals. In a demonstration, we use data from 10 days spanning 7 months in 2020 of Formosa Satellite 7 (FORMOSAT-7)/COSMIC-2. We use the forecasts of NOAA GFS to aid in the retrieval of relative humidity. The prediction is validated with a cloud truth dataset created from the imagery of the GOES-16 Advanced Baseline Imager (ABI) satellite and the GFS three-dimensional analysis of cloud-state conditions. Given these two algorithms for the presence or absence of clouds, confusion matrices and receiver operating characteristic (ROC) curves are used to analyze how well these algorithms perform. The ROCD-M algorithm has a balanced accuracy, which defines the quality of the classification test that considers both the sensitivity and specificity, greater than 70% for all altitudes between 6 and 10.25 km.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeana Mascio, jmascio@aer.com

Abstract

Radio occultation (RO) measurements have little direct sensitivity to clouds, but recent studies have shown that they may have an indirect sensitivity to thin, high clouds that are difficult to detect using conventional passive space-based cloud sensors. We implement two RO-based cloud detection (ROCD) algorithms for atmospheric layers in the middle and upper troposphere. The first algorithm is based on the methodology of a previous study, which explored signatures caused by upper-tropospheric clouds in RO profiles according to retrieved relative humidity, temperature lapse rate, and gradients in log-refractivity (ROCD-P), and the second is based on inferred relative humidity alone (ROCD-M). In both, atmospheric layers are independently predicted as cloudy or clear based on observational data, including high-performance RO retrievals. In a demonstration, we use data from 10 days spanning 7 months in 2020 of Formosa Satellite 7 (FORMOSAT-7)/COSMIC-2. We use the forecasts of NOAA GFS to aid in the retrieval of relative humidity. The prediction is validated with a cloud truth dataset created from the imagery of the GOES-16 Advanced Baseline Imager (ABI) satellite and the GFS three-dimensional analysis of cloud-state conditions. Given these two algorithms for the presence or absence of clouds, confusion matrices and receiver operating characteristic (ROC) curves are used to analyze how well these algorithms perform. The ROCD-M algorithm has a balanced accuracy, which defines the quality of the classification test that considers both the sensitivity and specificity, greater than 70% for all altitudes between 6 and 10.25 km.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeana Mascio, jmascio@aer.com
Save
  • Ackerman, S., R. Frey, K. Strabala, K. Liu, L. Gumley, B. Baum, and W. P. Menzel, 2010: Discriminating clear sky from clouds with MODIS (MOD35). MODIS Cloud Mask Team Algorithm Theoretical Basis Doc., version 6.1, 121 pp., https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD35_ATBD_Collection6_0.pdf.

  • Ackerman, S., R. Frey, K. Strabala, Y. Liu, L. Gumley, B. Baum, and P. Menzel, 2016: MODIS atmosphere l2 cloud mask product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed 7 December 2020, https://doi.org/10.5067/MODIS/MOD35_L2.006.

    • Crossref
    • Export Citation
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, https://doi.org/10.5194/amt-4-1077-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Entremont, R. P., R. Lynch, G. Uymin, J.-L. Moncet, R. B. Aschbrenner, M. Conner, and G. B. Gustafson, 2016: Application of optimal spectral sampling for a real-time global cloud analysis model. Wea. Forecasting, 31, 743761, https://doi.org/10.1175/WAF-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egan, J. P., 1975: Signal Detection Theory and ROC Analysis. Series in Cognition and Perception, Academic Press, 277 pp.

  • Fawcett, T., 2005: An introduction to ROC analysis. Pattern Recognit. Lett., 27, 861874, https://doi.org/10.1016/j.patrec.2005.10.010.

  • Frey, R. A., S. A. Ackerman, R. E. Holz, S. Dutcher, and Z. Griffith, 2020: The continuity MODIS-VIIRS cloud mask. Remote Sens., 12, 3334, https://doi.org/10.3390/rs12203334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, https://doi.org/10.1016/S1364-6826(01)00114-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A., 2012: ABI cloud mask. NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., version 3.0., 79 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Cloud%20Height_v3.0_July%202012.pdf.

  • Heidinger, A., A. Evan, M. Foster, and A. Walther, 2012: A naïve Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Climate Appl. Meteor., 51, 11291144, https://doi.org/10.1175/JAMC-D-11-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A., D. Botambekov, and A. Walther, 2016: A naïve Bayesian cloud mask delivered to NOAA Enterprise. NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., version 1.2, 53 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Enterprise/ATBD_Enterprise_Cloud_Mask_v1.2_Oct2016.pdf.

  • Ho, S.-P., and Coauthors, 2020: The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Amer. Meteor. Soc., 101, E1107E1136, https://doi.org/10.1175/BAMS-D-18-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and T. Gebhardt, 2014: A method to deconvolve errors in GPS RO-derived water vapor histograms. J. Atmos. Oceanic Technol., 31, 26062628, https://doi.org/10.1175/JTECH-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995: Observing tropospheric water vapor by radio occultation using the global positioning system. Geophys. Res. Lett., 22, 23652368, https://doi.org/10.1029/95GL02127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., F. Wu, S. Limaye, and M.-L. Wu, 1999: Sensing clouds via spacecraft radio occultation observations. Progress in Electromagnetic Research Symp., Taipei, Taiwan, Electromagnetics Academy.

  • Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Ocean. Sci., 11, 53114, https://doi.org/10.3319/TAO.2000.11.1.53(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luntama, J.-P., G. Kirchengast, M. Borsche, U. Foelsche, S. Healy, A. von Engeln, E. O’Clerigh, and C. Marquardt, 2008: Prospects of the EPS GRAS mission for operational atmospheric applications. Bull. Amer. Meteor. Soc., 89, 18631876, https://doi.org/10.1175/2008BAMS2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Atlas, 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 13031314, https://doi.org/10.1175/BAMS-86-9-1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G. S., M. de la Torre-Juárez, R. W. Farley, and J. E. Wessel, 2006: Impacts of upper tropospheric clouds on GPS radio refractivity. 2006 IEEE Aerospace Conf., Big Sky, MT, IEEE, https://doi.org/10.1109/AERO.2006.1655899.

    • Crossref
    • Export Citation
  • Petzold, A., and Coauthors, 2020: Ice-supersaturate air masses in the northern mid-latitudes from regular in-situ observations by passenger aircraft: Vertical distribution, seasonality and tropospheric fingerprint. Atmos. Chem. Phys., 20, 81578179, https://doi.org/10.5194/acp-20-8157-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provost, F., and T. Fawcett, 1997: Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proc. Third Int. Conf. on Knowledge Discovery and Data Mining, Menlo Park, CA, AAAI, 3–8, https://www.aaai.org/Library/KDD/1997/kdd97-007.php.

  • Provost, F., T. Fawcett, and R. Kohavi, 1998: The case against accuracy estimation for comparing induction algorithms. Proc. ICML-98, San Francisco, CA, ACM, 445–453, https://dl.acm.org/doi/10.5555/645527.657469.

  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6, 2394–2418, https://doi.org/10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W. S., and Coauthors, 2020: COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swets, J. A., R. M. Dawes, and J. Monahan, 2000: Better decisions through science. Sci. Amer., 283, 8287, https://doi.org/10.1038/scientificamerican1000-82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tien, J. Y., and Coauthors, 2012: Next generation scalable spaceborne GNSS science receiver. Proc. 2012 Int. Tech. Meeting of the Institute of Navigation, Newport Beach, CA, Institute of Navigation, 882–914.

  • Vorob’ev, V. V., and T. G. Krasil’nikova, 1994: Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Phys. Atmos. Ocean, 29, 602609.

    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, E. R. Kursinski, A. J. Mannucci, and S. Syndergaard, 2010: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., S. Yang, and P. S. Ray, 2012: Impacts of ice clouds on GPS radio occultation measurements. J. Atmos. Sci., 69, 36703682, https://doi.org/10.1175/JAS-D-11-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweig, M. H., and G. Campbell, 1993: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem., 39, 561577, https://doi.org/10.1093/clinchem/39.4.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 0 0
Full Text Views 2788 2504 144
PDF Downloads 407 139 5