• Alsabah, R., A. Al-Sabbagh, and J. Zec, 2018: RapidScat backscatter measurement validation. J. Appl. Remote Sens., 12, 034005, https://doi.org/10.1117/1.JRS.12.034005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., and I. R. Young, 2003: On estimating extreme wave heights using combined Geosat, TOPEX/Poseidon and ERS-1 altimeter data. Appl. Ocean Res., 25, 167186, https://doi.org/10.1016/j.apor.2004.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, L. C., III, N. L. Guinasso Jr., J. N. Walpert, and S. D. Howden, 2010: A comparison of methods for determining significant wave heights—Applied to a 3-m discus buoy during Hurricane Katrina. J. Atmos. Oceanic Technol., 27, 10121028, https://doi.org/10.1175/2010JTECHO724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., D. Croize-Fillon, and C. Perigaud, 2008: Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci., 4, 265274, https://doi.org/10.5194/os-4-265-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, and S.-Z. Lin, 2013: Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res. Atmos., 118, 90119021, https://doi.org/10.1002/jgrd.50724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C., H. Potter, B. Lund, H. Tamura, and H. C. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Oceans, 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNapoli, S. M., M. A. Bourassa, and M. D. Powell, 2012: Uncertainty and intercalibration analysis of H*Wind. J. Atmos. Oceanic Technol., 29, 822833, https://doi.org/10.1175/JTECH-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D., C. Conrad, and F. Paul, 2003: Handbook of automated data quality control checks and procedures of the National Data Buoy Center. NOAA/National Data Buoy Center Doc., 44 pp.

  • Hersbach, H., A. Stoffelen, and S. de Haan, 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, https://doi.org/10.1029/2006JC003743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934401, https://doi.org/10.1175/2010MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. W., and R. E. Welsch, 1977: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods, 6, 813827, https://doi.org/10.1080/03610927708827533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., Q. Chen, and S. K. Kimball, 2012: Consistency in hurricane surface wind forecasting: An improved parametric model. Nat. Hazards, 61, 10291050, https://doi.org/10.1007/s11069-011-9960-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, P. J., 2005: Robust Statistics. Vol. 579. Wiley, 320 pp.

  • Jensen, R., V. Swail, R. Bouchard, R. Riley, T. Hesser, M. Blaseckie, and C. MacIsaac, 2015: Field Laboratory for Ocean Sea State Investigation and Experimentation: FLOSSIE: Intra-measurement evaluation. 14th Int. Workshop on Wave Hindcasting and Forecasting/Fifth Coastal Hazard Symp., Southampton, United Kingdom, U.K. National Oceanography Centre, https://noc-events.co.uk/sites/conference.noc.ac.uk/files/documents/S1E1.pdf.

  • Klotz, B. W., and H. Jiang, 2016: Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database. Geophys. Res. Lett., 43, 10 480–10 488, https://doi.org/10.1002/2016GL071066.

    • Crossref
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2017: Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts. Mon. Wea. Rev., 145, 39894009, https://doi.org/10.1175/MWR-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA/National Centers for Environmental Information, accessed 10 October 2019, https://doi.org/10.25921/82ty-9e16.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. Morzel, and G. B. Crawford, 1995: Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. J. Phys. Oceanogr., 25, 29592971, https://doi.org/10.1175/1520-0485(1995)025<2959:AFSWDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leys, C., C. Ley, O. Klein, P. Bernard, and L. Licata, 2013: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol., 49, 764766, https://doi.org/10.1016/j.jesp.2013.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madsen, N. M., and D. G. Long, 2016: Calibration and validation of the RapidScat scatterometer using tropical rainforests. IEEE Trans. Geosci. Remote Sens., 54, 28462854, https://doi.org/10.1109/TGRS.2015.2506463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J., 1991: Reaction time analysis with outlier exclusion: Bias varies with sample size. Quart. J. Exp. Psychol., 43A, 907912, https://doi.org/10.1080/14640749108400962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pensieri, S., R. Bozzano, and M. E. Schiano, 2010: Comparison between QuikSCAT and buoy wind data in the Ligurian Sea. J. Mar. Syst., 81, 286296, https://doi.org/10.1016/j.jmarsys.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2019: 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data, 6, 77, https://doi.org/10.1038/s41597-019-0083-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2020a: Global calibration and error estimation of altimeter, scatterometer, and radiometer wind speed using triple collocation. Remote Sens., 12, 1997, https://doi.org/10.3390/rs12121997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2020b: Calibration and cross validation of global ocean wind speed based on scatterometer observation. J. Atmos. Oceanic Technol., 37, 279297, https://doi.org/10.1175/JTECH-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P. J., and C. Croux, 1993: Alternatives to the median absolute deviation. J. Amer. Stat. Assoc., 88, 12731283, https://doi.org/10.1080/01621459.1993.10476408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satheesan, K., A. Sarkar, A. Parekh, M. R. R. Kumar, and Y. Kuroda, 2007: Comparison of wind data from QuikSCAT and buoys in the Indian Ocean. Int. J. Remote Sens., 28, 23752382, https://doi.org/10.1080/01431160701236803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamizi, A., and I. R. Young, 2020: The spatial distribution of ocean waves in tropical cyclones. J. Phys. Oceanogr., 50, 21232139, https://doi.org/10.1175/JPO-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamizi, A., I. R. Young, A. Ribal, and J.-H. Alves, 2020: Global scatterometer observations of the structure of tropical cyclone wind fields. Mon. Wea. Rev., 148, 46734692, https://doi.org/10.1175/MWR-D-20-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: Comments on “On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique.” J. Phys. Oceanogr., 31, 25322536, https://doi.org/10.1175/1520-0485(2001)031<2532:COOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., and K. Bessho, 2011: A statistical analysis of near-core surface wind asymmetries in typhoons obtained from QuikSCAT data. J. Meteor. Soc. Japan, 89, 225241, https://doi.org/10.2151/jmsj.2011-304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 12901311, https://doi.org/10.1175/MWR-D-13-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoef, A., M. Portabella, and A. Stoffelen, 2012: High-resolution ASCAT scatterometer winds near the coast. IEEE Trans. Geosci. Remote Sens., 50, 24812487, https://doi.org/10.1109/TGRS.2011.2175001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verspeek, J., A. Stoffelen, M. Portabella, A. Verhoef, and J. Vogelzang, 2008: ASCAT scatterometer ocean calibration. Int. Geoscience and Remote Sensing Symp., Boston, MA, IEEE, V248–V251, https://doi.org/10.1109/IGARSS.2008.4780074.

    • Crossref
    • Export Citation
  • Vinoth, J., and I. R. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665, https://doi.org/10.1175/2010JCLI3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H., R. Darling, and M. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., S. Bao, L. J. Pietrafesa, K. Foley, and M. Fuentes, 2006: A real-time hurricane surface wind forecasting model: Formulation and verification. Mon. Wea. Rev., 134, 13551370, https://doi.org/10.1175/MWR3126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, https://doi.org/10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, https://doi.org/10.1029/2006JC003540.

  • Young, I. R., 2017: A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8, 194, https://doi.org/10.3390/atmos8100194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Eng., 70, 1424, https://doi.org/10.1016/j.oceaneng.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and M. A. Donelan, 2018: On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ., 215, 228241, https://doi.org/10.1016/j.rse.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., E. Sanina, and A. V. Babanin, 2017: Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J. Atmos. Oceanic Technol., 34, 12851306, https://doi.org/10.1175/JTECH-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., E. Kirezci, and A. Ribal, 2020: The global wind resource observed by scatterometer. Remote Sens., 12, 2920, https://doi.org/10.3390/rs12182920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., and R. A. Brown, 1998: Scatterometer observations at high wind speeds. J. Appl. Meteor., 37, 14121420, https://doi.org/10.1175/1520-0450(1998)037<1412:SOAHWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., J. Vinoth, and I. R. Young, 2009: Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Oceanic Technol., 26, 25492564, https://doi.org/10.1175/2009JTECHA1303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, W. Erick Rogers, and I. R. Young, 2015: Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96, 225, https://doi.org/10.1016/j.ocemod.2015.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 160 160 31
Full Text Views 18 18 10
PDF Downloads 28 28 12

Calibration of Scatterometer Wind Speed under Hurricane Conditions

View More View Less
  • 1 a Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia
  • | 2 b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Four scatterometers, namely, MetOp-A, MetOp-B, ERS-2, and OceanSat-2 were recalibrated against combined National Data Buoy Center (NDBC) data and aircraft Stepped Frequency Microwave Radiometer (SFMR) data from hurricanes. As a result, continuous calibration relations over the wind speed range from 0 to 45 m s−1 were developed. The calibration process uses matchup criteria of 50 km and 30 min for the buoy data. However, due to the strong spatiotemporal wind speed gradients in hurricanes, a method that considers both scatterometer and SFMR data in a storm-centered translating frame of reference is adopted. The results show that although the scatterometer radar cross section is degraded at high wind speeds, it is still possible to recover wind speed data using the recalibration process. Data validation between the scatterometers shows that the calibration relations produce consistent results across all scatterometers and reduce the bias and root-mean-square error compared to previous calibrations. In addition, the results extend the useful range of scatterometer measurements to as high as 45 m s−1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au

Abstract

Four scatterometers, namely, MetOp-A, MetOp-B, ERS-2, and OceanSat-2 were recalibrated against combined National Data Buoy Center (NDBC) data and aircraft Stepped Frequency Microwave Radiometer (SFMR) data from hurricanes. As a result, continuous calibration relations over the wind speed range from 0 to 45 m s−1 were developed. The calibration process uses matchup criteria of 50 km and 30 min for the buoy data. However, due to the strong spatiotemporal wind speed gradients in hurricanes, a method that considers both scatterometer and SFMR data in a storm-centered translating frame of reference is adopted. The results show that although the scatterometer radar cross section is degraded at high wind speeds, it is still possible to recover wind speed data using the recalibration process. Data validation between the scatterometers shows that the calibration relations produce consistent results across all scatterometers and reduce the bias and root-mean-square error compared to previous calibrations. In addition, the results extend the useful range of scatterometer measurements to as high as 45 m s−1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au
Save