State Estimates and Forecasts of the Northern Philippine Sea Circulation including Ocean Acoustic Travel Times

Ganesh Gopalakrishnan aClimate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, San Diego, California

Search for other papers by Ganesh Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
,
Bruce D. Cornuelle aClimate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, San Diego, California

Search for other papers by Bruce D. Cornuelle in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Mazloff aClimate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, San Diego, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
,
Peter F. Worcester bInstitute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, San Diego, California

Search for other papers by Peter F. Worcester in
Current site
Google Scholar
PubMed
Close
, and
Matthew A. Dzieciuch bInstitute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, San Diego, California

Search for other papers by Matthew A. Dzieciuch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 2010–11 North Pacific Acoustic Laboratory (NPAL) Philippine Sea experiment measured travel times between six acoustic transceiver moorings in a 660-km diameter ocean acoustic tomography array in the northern Philippine Sea (NPS). The travel-time series compare favorably with travel times computed for a yearlong series of state estimates produced for this region using the Massachusetts Institute of Technology General Circulation Model–Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system constrained by satellite sea surface height and sea surface temperature observations and by Argo temperature and salinity profiles. Fluctuations in the computed travel times largely match the fluctuations in the measurements caused by the intense mesoscale eddy field in the NPS, providing a powerful test of the observations and state estimates. The computed travel times tend to be shorter than the measured travel times, however, reflecting a warm bias in the state estimates. After processing the travel times to remove tidal signals and extract the low-frequency variability, the differences between the measured and computed travel times were used in addition to SSH, SST, and Argo temperature and salinity observations to further constrain the model and generate improved state estimates. The assimilation of the travel times reduced the misfit between the measured and computed travel times, while not increasing the misfits with the other assimilated observations. The state estimates that used the travel times are more consistent with temperature measurements from an independent oceanographic mooring than the state estimates that did not incorporate the travel times.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ganesh Gopalakrishnan, ganeshgopal@ucsd.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-20-0083.1.

Abstract

The 2010–11 North Pacific Acoustic Laboratory (NPAL) Philippine Sea experiment measured travel times between six acoustic transceiver moorings in a 660-km diameter ocean acoustic tomography array in the northern Philippine Sea (NPS). The travel-time series compare favorably with travel times computed for a yearlong series of state estimates produced for this region using the Massachusetts Institute of Technology General Circulation Model–Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system constrained by satellite sea surface height and sea surface temperature observations and by Argo temperature and salinity profiles. Fluctuations in the computed travel times largely match the fluctuations in the measurements caused by the intense mesoscale eddy field in the NPS, providing a powerful test of the observations and state estimates. The computed travel times tend to be shorter than the measured travel times, however, reflecting a warm bias in the state estimates. After processing the travel times to remove tidal signals and extract the low-frequency variability, the differences between the measured and computed travel times were used in addition to SSH, SST, and Argo temperature and salinity observations to further constrain the model and generate improved state estimates. The assimilation of the travel times reduced the misfit between the measured and computed travel times, while not increasing the misfits with the other assimilated observations. The state estimates that used the travel times are more consistent with temperature measurements from an independent oceanographic mooring than the state estimates that did not incorporate the travel times.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ganesh Gopalakrishnan, ganeshgopal@ucsd.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-20-0083.1.

Save
  • ATOC Consortium, 1998: Ocean climate change: Comparison of acoustic tomography, satellite altimetry, and modeling. Science, 281, 13271332, https://doi.org/10.1126/science.281.5381.1327.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1973: New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res. Oceanogr. Abstr., 20, 401408, https://doi.org/10.1016/0011-7471(73)90063-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E., H. Hurlburt, O. Smedstad, G. Halliwell, P. Hogan, A. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, https://doi.org/10.1016/j.jmarsys.2005.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and F. J. Millero, 1977: Speed of sound in seawater at high pressures. J. Acoust. Soc. Amer., 62, 11291135, https://doi.org/10.1121/1.381646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967996, https://doi.org/10.1175/JPO2876.1.

  • Cornuelle, B. D., and P. F. Worcester, 1996: Ocean acoustic tomography: Integral data and ocean models. Modern Approaches to Data Assimilation in Ocean Modeling, P. Malanotte-Rizzoli, Ed., Elsevier, 97–115.

    • Crossref
    • Export Citation
  • Cornuelle, B. D., P. F. Worcester, B. D. Dushaw, B. M. Howe, and R. C. Spindel, 1999: AMODE: An example of tomographic data assimilation. Proc. Int. Symp. on Acoustic Tomography and Acoustic Thermometry, Tokyo and Yokosuka, Japan, Japan Marine Science and Technology Center, 1928.

  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Grosso, V. A., 1974: New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Amer., 56, 10841091, https://doi.org/10.1121/1.1903388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res., 105, 1947719498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1993: On equations for the speed of sound in seawater. J. Acoust. Soc. Amer., 93, 255275, https://doi.org/10.1121/1.405660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1994: Barotropic currents and vorticity in the central North Pacific Ocean during summer 1987 determined from long-range reciprocal acoustic transmissions. J. Geophys. Res., 99, 32633272, https://doi.org/10.1029/93JC03335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., B. M. Howe, B. D. Cornuelle, P. F. Worcester, and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631647, https://doi.org/10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dzieciuch, M. A., 2014: Signal processing and tracking of arrivals in ocean acoustic tomography. J. Acoust. Soc. Amer., 136, 25122522, https://doi.org/10.1121/1.4897404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elisseeff, P., H. Schmidt, and X. Wen, 2002: Ocean acoustic tomography as a data assimilation problem. IEEE J. Oceanic Eng., 27, 275282, https://doi.org/10.1109/JOE.2002.1002482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, https://doi.org/10.1029/1999GB001254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and R. Millard Jr, 1983: Algorithms for the computation of fundamental properties of seawater. UNESCO Tech. Papers in Marine Sciences 44, 53 pp.

  • Fukumori, I., and P. Malanotte-Rizzoli, 1995: An approximate Kaiman filter for ocean data assimilation: An example with an idealized Gulf Stream model. J. Geophys. Res., 100, 6777–6793, https://doi.org/10.1029/94JC03084.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., T. Lee, B. Cheng, and D. Menemenlis, 2004: The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr., 34, 582604, https://doi.org/10.1175/2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, J., and C. Lemaréchal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program., 45, 407435, https://doi.org/10.1007/BF01589113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, and I. Hoteit, 2013a: Adjoint sensitivity studies of Loop Current and eddy shedding in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 33153335, https://doi.org/10.1002/jgrc.20240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, I. Hoteit, D. L. Rudnick, and W. B. Owens, 2013b: State estimates and forecasts of the Loop Current in the Gulf of Mexico using the MITgcm and its adjoint. J. Geophys. Res. Oceans, 118, 32923314, https://doi.org/10.1002/jgrc.20239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, M. Mazloff, P. Worcester, and M. Dzieciuch, 2021: State estimates and forecasts of the eddy field in the subtropical countercurrent in the northern Philippine Sea. J. Atmos. Oceanic Technol., 38, 18891911, https://doi.org/10.1175/JTECH-D-20-0083.1.

    • Search Google Scholar
    • Export Citation
  • Gunson, J. R., and P. Malanotte-Rizzoli, 1996: Assimilation studies of open ocean flows: 1. Estimation of initial and boundary conditions. J. Geophys. Res., 101, 2845728472, https://doi.org/10.1029/96JC02781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Hill, and R. Giering, 2002: Automatic generation of efficient adjoint code for a parallel Navier-Stokes solver. 2002 Int. Conf. on Computational Science, Amsterdam, Netherlands, ICCS, 1019–1028.

  • Hoteit, I., B. Cornuelle, A. Kohl, and D. Stammer, 2005: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 36593682, https://doi.org/10.1256/qj.05.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, S. Y. Kim, G. Forget, A. Kohl, and E. Terrill, 2009: Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dyn. Atmos. Oceans, 48, 175197, https://doi.org/10.1016/j.dynatmoce.2008.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. J. Geophys. Res., 115, C03001, https://doi.org/10.1029/2009JC005437.

    • Crossref
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson, B. Cornuelle, A. Köhl, and P. Heimbach, 2013: A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, https://doi.org/10.1016/j.dynatmoce.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., D. Stammer, and B. Cornuelle, 2007: Interannual to decadal changes in the ECCO global synthesis. J. Phys. Oceanogr., 37, 313337, https://doi.org/10.1175/JPO3014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., M. Yaremchuk, H. Mitsudera, I. Nakano, and G. Yuan, 2003: Monitoring the Kuroshio Extension with dynamically constrained synthesis of the acoustic tomography, satellite altimeter and in situ data. J. Oceanogr., 59, 751763, https://doi.org/10.1023/B:JOCE.0000009568.06949.c5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Dimet, F., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, https://doi.org/10.3402/tellusa.v38i2.11706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and Coauthors, 2015: The Kuroshio and Luzon Undercurrent east of Luzon Island. Oceanography, 28 (4), 5463, https://doi.org/10.5670/oceanog.2015.81.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., 1995: Variational assimilation of acoustic tomography. Ph.D. thesis, Florida State University, 106 pp., https://coaps.fsu.edu/docs/dissertations/LiuMSummer1995.pdf.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and D. R. Watts, 1997: Further evidence that the sound-speed algorithm of Del Grosso is more accurate than that of Chen and Millero. J. Acoust. Soc. Amer., 102, 20582062, https://doi.org/10.1121/1.419655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and C. Wunsch, 1997: Linearization of an oceanic general circulation model for data assimilation and climate studies. J. Atmos. Oceanic Technol., 14, 14201443, https://doi.org/10.1175/1520-0426(1997)014<1420:LOAOGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and M. Chechelnitsky, 2000: Error estimates for an ocean general circulation model from altimeter and acoustic tomography data. Mon. Wea. Rev., 128, 763778, https://doi.org/10.1175/1520-0493(2000)128<0763:EEFAOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., T. Webb, C. Wunsch, U. Send, and C. Hill, 1997: Basin-scale ocean circulation from combined altimetric, tomographic and model data. Nature, 385, 618621, https://doi.org/10.1038/385618a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F., and X. Li, 1994: Comments on “On equations for the speed of sound in seawater.” J. Acoust. Soc. Amer., 95, 27572759, https://doi.org/10.1121/1.409844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morozov, A. K., D. C. Webb, C.-S. Chiu, P. F. Worcester, M. A. Dzieciuch, H. Sagen, J. Y. Guign, and T. W. Altshuler, 2016: High-efficient tunable sound sources for ocean and bottom tomography, 15 years of operating history. Proc. OCEANS 2016 MTS/IEEE, Monterey, CA, IEEE, https://doi.org/10.1109/OCEANS.2016.7761066.

    • Crossref
    • Export Citation
  • Munk, W. H., and C. Wunsch, 1982: Observing the ocean in the 1990s. Philos. Trans. Roy. Soc. London, 307A, 439464, https://doi.org/10.1098/rsta.1982.0120.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., P. F. Worcester, and C. Wunsch, 1995: Ocean Acoustic Tomography. Cambridge University Press, 433 pp.

  • Park, J.-H., and A. Kaneko, 2000: Assimilation of coastal acoustic tomography data into a barotropic ocean model. Geophys. Res. Lett., 27, 3373–3376, https://doi.org/10.1029/2000GL011600.

    • Crossref
    • Export Citation
  • Park, J.-H., and A. Kaneko, 2001: Correction to assimilation of coastal acoustic tomography data into a barotropic ocean model. Geophys. Res. Lett., 28, 343–343, https://doi.org/10.1029/2000GL012754.

    • Crossref
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using t_tide. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, B. S., C. G. Kerry, and B. D. Cornuelle, 2013: Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. J. Acoust. Soc. Amer., 134, 32113222, https://doi.org/10.1121/1.4818786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, https://doi.org/10.1175/2009JPO4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, I. Cerovecki, B. D. Cornuelle, S. Chen, M. C. Schonau, J. L. McClean, and G. Gopalakrishnan, 2015: The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography, 28 (4), 2433, https://doi.org/10.5670/oceanog.2015.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., J. A. Colosi, P. F. Worcester, F. L. Bahr, K. D. Heaney, J. A. Mercer, and L. J. Van Uffelen, 2017: Eddy properties in the subtropical countercurrent, western Philippine Sea. Deep-Sea Res. I, 125, 1125, https://doi.org/10.1016/j.dsr.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémy, E., F. Gaillard, and J. Verron, 2002: Variational assimilation of ocean tomographic data: Twin experiments in a quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 128, 17391758, https://doi.org/10.1002/qj.200212858317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24 (4), 5263, https://doi.org/10.5670/oceanog.2011.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M. C., D. L. Rudnick, I. Cerovecki, G. Gopalakrishnan, B. D. Cornuelle, J. L. McClean, and B. Qiu, 2015: The Mindanao Current: Mean structure and connectivity. Oceanography, 28 (4), 3445, https://doi.org/10.5670/oceanog.2015.79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheinbaum, J., 1995: Variational assimilation of simulated acoustic tomography data and point observations: A comparative study. J. Geophys. Res., 100, 2074520761, https://doi.org/10.1029/95JC02113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinke, T., Y. Yoshikawa, T. Kamoshida, and H. Mitsudera, 2001: Analysis method for ocean acoustic tomography data using Kalman filter—Evaluation by identical twin experiment. Jpn. J. Appl. Phys., 40, 38353841, https://doi.org/10.1143/JJAP.40.3835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107, 3118, https://doi.org/10.1029/2001JC000888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdy, A., B. Cornuelle, M. R. Mazloff, and D. L. Rudnick, 2017: Estimation of the tropical Pacific Ocean state 2010–13. J. Atmos. Oceanic Technol., 34, 15011517, https://doi.org/10.1175/JTECH-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worcester, P. F., S. Carey, M. A. Dzieciuch, L. L. Green, D. Horwitt, J. C. Lemire, and M. Norenberg, 2009: Distributed vertical line array (DVLA) acoustic receiver. Proc. Third Int. Conf. on Underwater Acoustic Measurements: Technologies and Results, Nafplion, Greece, Foundation for Research and Technology Hellas, 113118.

  • Worcester, P. F., and Coauthors, 2013: The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Amer., 134, 33593375, https://doi.org/10.1121/1.4818887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Yaremchuk, M. I., and D. A. Nechaev, 2001: Simulations of quasigeostrophic currents derived from satellite altimetry and acoustic tomography of an open ocean region. J. Atmos. Oceanic Technol., 18, 18941910, https://doi.org/10.1175/1520-0426(2001)018<1894:SOQCDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M. I., and A. I. Yaremchuk, 2001: Variational inversion of the ocean acoustic tomography data using quadratic approximation to travel times. Geophys. Res. Lett., 28, 17671770, https://doi.org/10.1029/2000GL012287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M. I., K. Lebedev, and D. Nechaev, 2004: A four-dimensional inversion of the acoustic tomography, satellite altimetry and in situ data using quasigeostrophic constraints. Inverse Prob. Sci. Eng., 12, 409–431, https://doi.org/10.1080/10682760310001633689.

    • Crossref
    • Export Citation
  • Zhang, X., B. Cornuelle, and D. Roemmich, 2012: Sensitivity of western boundary transport at the mean North Equatorial Current bifurcation latitude to wind forcing. J. Phys. Oceanogr., 42, 20562072, https://doi.org/10.1175/JPO-D-11-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 266 0 0
Full Text Views 294 184 19
PDF Downloads 304 167 13