High-Frequency Radar Measurements with CODAR in the Region of Nice: Improved Calibration and Performance

Charles-Antoine Guérin aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Charles-Antoine Guérin in
Current site
Google Scholar
PubMed
Close
,
Dylan Dumas aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Dylan Dumas in
Current site
Google Scholar
PubMed
Close
,
Anne Molcard aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Anne Molcard in
Current site
Google Scholar
PubMed
Close
,
Céline Quentin aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Céline Quentin in
Current site
Google Scholar
PubMed
Close
,
Bruno Zakardjian aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Bruno Zakardjian in
Current site
Google Scholar
PubMed
Close
,
Anthony Gramoullé aMIO, Université de Toulon, Aix-Marseille Université, CNRS, IRD, Toulon, France

Search for other papers by Anthony Gramoullé in
Current site
Google Scholar
PubMed
Close
, and
Maristella Berta bISMAR, CNR, La Spezia, Italy

Search for other papers by Maristella Berta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We report on the installation and first results of one compact oceanographic radar in the region of Nice for a long-term observation of the coastal surface currents in the northwest Mediterranean Sea. We describe the specific processing and calibration techniques that were developed at the laboratory to produce high-quality radial surface current maps. In particular, we propose an original self-calibration technique of the antenna patterns, which is based on the sole analysis of the database and does not require any shipborne transponder or other external transmitters. The relevance of the self-calibration technique and the accuracy of inverted surface currents have been assessed with the launch of 40 drifters that remained under the radar coverage for about 10 days.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles-Antoine Guérin, guerin@univ-tln.fr

Abstract

We report on the installation and first results of one compact oceanographic radar in the region of Nice for a long-term observation of the coastal surface currents in the northwest Mediterranean Sea. We describe the specific processing and calibration techniques that were developed at the laboratory to produce high-quality radial surface current maps. In particular, we propose an original self-calibration technique of the antenna patterns, which is based on the sole analysis of the database and does not require any shipborne transponder or other external transmitters. The relevance of the self-calibration technique and the accuracy of inverted surface currents have been assessed with the launch of 40 drifters that remained under the radar coverage for about 10 days.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles-Antoine Guérin, guerin@univ-tln.fr
Save
  • Bellomo, L., and Coauthors, 2015: Toward an integrated HF radar network in the Mediterranean Sea to improve search and rescue and oil spill response: The TOSCA project experience. J. Operat. Oceanogr., 8, 95107, https://doi.org/10.1080/1755876X.2015.1087184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berta, M., and Coauthors, 2018: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system. Ocean Sci., 14, 689710, https://doi.org/10.5194/os-14-689-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berta, M., R. Sciascia, M. Magaldi, and A. Griffa, 2020: Drifter deployment in the framework of the IMPACT (Port impacts on marine protected areas: Transnational cooperative actions) project. SEANOE, accessed 8 May 2020, https://doi.org/10.17882/72369.

    • Crossref
    • Export Citation
  • Coppola, L., L. Legendre, D. Lefevre, L. Prieur, V. Taillandier, and E. D. Riquier, 2018: Seasonal and inter-annual variations of dissolved oxygen in the northwestern Mediterranean Sea (DYFAMED site). Prog. Oceanogr., 162, 187201, https://doi.org/10.1016/j.pocean.2018.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppola, L., P. Raimbault, L. Mortier, and P. Testor, 2019: Monitoring the environment in the northwestern Mediterranean Sea. Eos, 100, https://doi.org/10.1029/2019EO125951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumas, D., and C.-A. Guérin, 2020: Self-calibration and antenna grouping for bistatic oceanographic high-frequency radars. arXiv, 16 pp., https://arxiv.org/abs/2005.10528.

    • Search Google Scholar
    • Export Citation
  • Dumas, D., A. Gramoullé, C.-A. Guérin, A. Molcard, Y. Ourmieres, and B. Zakardjian, 2020: Multistatic estimation of high-frequency radar surface currents in the region of Toulon. Ocean Dyn., 70, 14851503, https://doi.org/10.1007/s10236-020-01406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, B. M., and L. Washburn, 2019: Uncertainty estimates for SeaSonde HF radar ocean current observations. J. Atmos. Oceanic Technol., 36, 231247, https://doi.org/10.1175/JTECH-D-18-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, B. M., L. Washburn, C. Whelan, D. Barrick, and J. Harlan, 2014: Measuring antenna patterns for ocean surface current HF radars with ships of opportunity. J. Atmos. Oceanic Technol., 31, 15641582, https://doi.org/10.1175/JTECH-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D. M., J. Vesecky, and C. Teague, 2003: Calibration of HF radar systems with ships of opportunity. Proc. 2003 IEEE Int. Geoscience and Remote Sensing Symp., Toulouse, France, Institute of Electrical and Electronics Engineers, 4271–4273, https://doi.org/10.1109/IGARSS.2003.1295486.

    • Crossref
    • Export Citation
  • Fernandez, D. M., J. F. Vesecky, and C. Teague, 2006: Phase corrections of small-loop HF radar system receive arrays with ships of opportunity. IEEE J. Oceanic Eng., 31, 919921, https://doi.org/10.1109/JOE.2006.886238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores-Vidal, X., P. Flament, R. Durazo, C. Chavanne, and K.-W. Gurgel, 2013: High-frequency radars: Beamforming calibrations using ships as reflectors. J. Atmos. Oceanic Technol., 30, 638648, https://doi.org/10.1175/JTECH-D-12-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, B., and A. J. Weiss, 1988: Eigenstructure methods for direction finding with sensor gain and phase uncertainties. ICASSP-88: Int. Conf. on Acoustics, Speech, and Signal Processing, New York, NY, Institute of Electrical and Electronics Engineers, 2681–2684, https://doi.org/10.1109/ICASSP.1988.197201.

    • Crossref
    • Export Citation
  • Guérin, C.-A., D. Dumas, A. Gramoullé, C. Quentin, M. Saillard, and A. Molcard, 2019: The multistatic HF radar network in Toulon. IEEE Radar 2019 Conf., Toulon, France, Institute of Electrical and Electronics Engineers, 1–5, https://doi.org/10.1109/RADAR41533.2019.171401.

    • Crossref
    • Export Citation
  • IMPACT, 2016: IMpact of Ports on marine protected areas: Cooperative Cross-Border Actions. http://impact-maritime.eu/en/.

  • Kirincich, A., 2017: Improved detection of the first-order region for direction-finding HF radars using image processing techniques. J. Atmos. Oceanic Technol., 34, 16791691, https://doi.org/10.1175/JTECH-D-16-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., T. De Paolo, and E. Terrill, 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, https://doi.org/10.1175/JTECH-D-11-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., B. Emery, L. Washburn, and P. Flament, 2019: Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars. J. Atmos. Oceanic Technol., 36, 19972014, https://doi.org/10.1175/JTECH-D-19-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laws, K., J. D. Paduan, and J. Vesecky, 2010: Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Oceanic Technol., 27, 10291043, https://doi.org/10.1175/2009JTECHO658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B., B. Nyden, D. S. Ullman, and E. Terrill, 2006: Seasonde radial velocities: Derivation and internal consistency. IEEE J. Oceanic Eng., 31, 850861, https://doi.org/10.1109/JOE.2006.886104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, C. R. Merz, S. Lichtenwalner, and G. J. Kirkpatrick, 2010: HF radar performance in a low-energy environment: Codar SeaSonde experience on the west Florida shelf. J. Atmos. Oceanic Technol., 27, 16891710, https://doi.org/10.1175/2010JTECHO720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. R. Merz, 2014: Assessment of CODAR SeaSonde and WERA HF radars in mapping surface currents on the west Florida shelf. J. Atmos. Oceanic Technol., 31, 13631382, https://doi.org/10.1175/JTECH-D-13-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manso-Narvarte, I., E. Fredj, G. Jordà, M. Berta, A. Griffa, A. Caballero, and A. Rubio, 2020: 3D reconstruction of ocean velocity from high-frequency radar and acoustic Doppler current profiler: A model-based assessment study. Ocean Sci., 16, 575591, https://doi.org/10.5194/os-16-575-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantovani, C., and Coauthors, 2020: Best practices on high frequency radar deployment and operation for ocean current measurement. Front. Mar. Sci., 7, 210, https://doi.org/10.3389/fmars.2020.00210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MOOSE, 2008: Mediterranean Ocean Observing System for the Environment. https://www.moose-network.fr/fr.

  • Novelli, G., C. Guigand, C. Cousin, E. Ryan, J. Laxage, H. Dai, K. Haus, and T. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., K. C. Kim, M. S. Cook, and F. P. Chavez, 2006: Calibration and validation of direction-finding high-frequency radar ocean surface current observations. IEEE J. Oceanic Eng., 31, 862875, https://doi.org/10.1109/JOE.2006.886195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quentin, C. G., and Coauthors, 2013: HF radar in French Mediterranean Sea: An element of MOOSE Mediterranean Ocean observing system on environment. Ocean & Coastal Observation: Sensors and Observing Systems, Numerical Models and Information, Nice, France, Société de l’Electricité, de l’Electronique et des Technologies de l’Information et de la Communication, 25–30, https://hal.archives-ouvertes.fr/hal-00906439.

  • Quentin, C. G., and Coauthors, 2014: High frequency surface wave radar in the French Mediterranean Sea: An element of the Mediterranean Ocean observing system for the environment. Seventh EuroGOOS Conf., Lisbon, Portugal, EuroGOOS, 111–118, https://hal.archives-ouvertes.fr/hal-01131489.

  • Schmidt, R., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 34, 276280, https://doi.org/10.1109/TAP.1986.1143830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, K.-P., and H. Lüthen, 2009: Astrophotography. Handbook of Practical Astronomy, Springer, 133–173.

    • Crossref
    • Export Citation
  • SICOMAR-PLUS, 2018: SIstema transfrontaliero per la sicurezza in mare COntro i rischi della navigazione e per la salvaguardia dell’ambiente MARino. http://interreg-maritime.eu/web/sicomarplus.

  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, https://doi.org/10.1016/0011-7471(74)90066-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuncer, T. E., and B. Friedlander, 2009: Classical and Modern Direction-of-Arrival Estimation. Academic Press, 456 pp.

  • Updyke, T., 2020: Antenna pattern measurement guide. Tech. Rep., Old Dominion University, 46 pp., http://www.ccpo.odu.edu/currentmapping/documents/guides/Antenna_Pattern_Measurement_Guide_2020.pdf.

  • Washburn, L., E. Romero, C. Johnson, B. Emery, and C. Gotschalk, 2017: Measurement of antenna patterns for oceanographic radars using aerial drones. J. Atmos. Oceanic Technol., 34, 971981, https://doi.org/10.1175/JTECH-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, A. J., and B. Friedlander, 1990: Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits Syst. Signal Process., 9, 271300, https://doi.org/10.1007/BF01201215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Chen, G. Zeng, and L. Zhang, 2015: Evaluating two array autocalibration methods with multifrequency HF radar current measurements. J. Atmos. Oceanic Technol., 32, 10881097, https://doi.org/10.1175/JTECH-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Chen, J. Li, F. Ding, W. Huang, and L. Fan, 2020: Validation and evaluation of a ship echo-based array phase manifold calibration method for HF surface wave radar DOA estimation and current measurement. Remote Sens., 12, 2761, https://doi.org/10.3390/rs12172761.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 216 1 0
Full Text Views 319 214 11
PDF Downloads 370 234 11