Data Validation and Mesoscale Assimilation of Himawari-8 Optimal Cloud Analysis Products

Michiko Otsuka Meteorological College, Kashiwa, Chiba, Japan

Search for other papers by Michiko Otsuka in
Current site
Google Scholar
PubMed
Close
,
Hiromu Seko Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hiromu Seko in
Current site
Google Scholar
PubMed
Close
,
Masahiro Hayashi Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Masahiro Hayashi in
Current site
Google Scholar
PubMed
Close
, and
Ko Koizumi Japan Meteorological Agency, Chiyoda-ku, Tokyo, Japan

Search for other papers by Ko Koizumi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Himawari-8 optimal cloud analysis (OCA), which employs all 16 channels of the Advanced Himawari Imager, provides cloud properties such as cloud phase, top pressure, optical thickness, effective radius, and water path. By using OCA, the water vapor distribution can be inferred with high spatiotemporal resolution and with a wide coverage, including over the ocean, which can be useful for improving initial states for prediction of the torrential rainfalls that occur frequently in Japan. OCA products were first evaluated by comparing them with different kinds of datasets (surface, sonde, and ceilometer observations) and with model outputs, to determine their data characteristics. Overall, OCA data were consistent with observations of water clouds with moderate optical thicknesses at low to midlevels. Next, pseudorelative humidity data were derived from the OCA products, and utilized in assimilation experiments of a few heavy rainfall cases, conducted with the Japan Meteorological Agency’s nonhydrostatic model–based Variational Data Assimilation System. Assimilation of OCA pseudorelative humidities caused there to be significant differences in the initial conditions of water vapor fields compared to the control, especially where OCA clouds were detected, and their influence lasted relatively long in terms of forecast hours. Impacts of assimilation on other variables, such as wind speed, were also seen. When the OCA data successfully represented low-level inflows from over the ocean, they positively impacted precipitation forecasts at extended forecast times.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michiko Otsuka, motsuka@mc-jma.go.jp

Abstract

Himawari-8 optimal cloud analysis (OCA), which employs all 16 channels of the Advanced Himawari Imager, provides cloud properties such as cloud phase, top pressure, optical thickness, effective radius, and water path. By using OCA, the water vapor distribution can be inferred with high spatiotemporal resolution and with a wide coverage, including over the ocean, which can be useful for improving initial states for prediction of the torrential rainfalls that occur frequently in Japan. OCA products were first evaluated by comparing them with different kinds of datasets (surface, sonde, and ceilometer observations) and with model outputs, to determine their data characteristics. Overall, OCA data were consistent with observations of water clouds with moderate optical thicknesses at low to midlevels. Next, pseudorelative humidity data were derived from the OCA products, and utilized in assimilation experiments of a few heavy rainfall cases, conducted with the Japan Meteorological Agency’s nonhydrostatic model–based Variational Data Assimilation System. Assimilation of OCA pseudorelative humidities caused there to be significant differences in the initial conditions of water vapor fields compared to the control, especially where OCA clouds were detected, and their influence lasted relatively long in terms of forecast hours. Impacts of assimilation on other variables, such as wind speed, were also seen. When the OCA data successfully represented low-level inflows from over the ocean, they positively impacted precipitation forecasts at extended forecast times.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michiko Otsuka, motsuka@mc-jma.go.jp
Save
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., E. Klinker, A. K. Betts, and J. A. Coakley Jr., 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 27362751, https://doi.org/10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coordination Group for Meteorological Satellites, 2020: Satellite User Readiness Navigator. WMO Space Programme, https://www.wmo-sat.info/satellite-user-readiness/.

  • Costa-Surós, M., J. Calbó, J. A. González, and J. Martin-Vide, 2013: Behavior of cloud base height from ceilometer measurements. Atmos. Res., 127, 6476, https://doi.org/10.1016/j.atmosres.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa-Surós, M., J. Calbó, J. A. González, and C. N. Long, 2014: Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements. Atmos. Meas. Tech., 7, 27572773, https://doi.org/10.5194/amt-7-2757-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2016a: MTG-FCI: ATBD for optimal cloud analysis product. EUMETSAT Algorithm Theoretical Basis Doc. EUM/MTG/DOC/11/0654 v5, 81 pp, https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:OCA/print.

  • EUMETSAT, 2016b: Optimal cloud analysis: Product guide. EUMETSAT Doc. EUM/TSS/MAN/14/770106 v2A, 31 pp, https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:OCA/print.

  • Fan, X., and J. S. Tilley, 2005: Dynamic assimilation of MODIS-retrieved humidity profiles within a regional model for high-latitude forecast applications. Mon. Wea. Rev., 133, 34503480, https://doi.org/10.1175/MWR3044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 11911217, https://doi.org/10.1002/qj.3202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., R. Bennartz, M. Lebsock, and J. Teixeira, 2018: An uncertainty data set for passive microwave satellite observations of warm cloud liquid water path. J. Geophys. Res. Atmos., 123, 36683687, https://doi.org/10.1002/2017JD027638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 1128, https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and P. Watts, 2016: Two-layer cloud retrieval using visible to infrared bands of Himawari-8. EUMETSAT Meteorological Satellite Conf., Darmstadt, Germany, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/PreviousEvents/DAT2833302.html.

  • Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018a: Assimilation of Himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res. Atmos., 123, 965976, https://doi.org/10.1002/2017JD027096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., and Coauthors, 2018b: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213229, https://doi.org/10.1175/MWR-D-16-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 34653475, https://doi.org/10.1256/qj.05.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishida, H., Y. Oishi, K. Morita, K. Moriwaki, and T. Y. Nakajima, 2018: Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions. Remote Sens. Environ., 205, 390407, https://doi.org/10.1016/j.rse.2017.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO technical progress report on the Global Data-Processing and Forecasting System and numerical weather prediction research, 229 pp, https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

  • Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 20522081, https://doi.org/10.1175/MWR-D-14-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 22722289, https://doi.org/10.1175/MWR-D-12-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 2018: Representative height of the low-level water vapor field for examining the initiation of moist convection leading to heavy rainfall in East Asia. J. Meteor. Soc. Japan, 96, 6983, https://doi.org/10.2151/jmsj.2018-008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazumori, M., 2018: Assimilation of Himawari-8 clear sky radiance data in JMA’s global and mesoscale NWP systems. J. Meteor. Soc. Japan, 96B, 173192, https://doi.org/10.2151/jmsj.2018-037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunii, M., M. Otsuka, K. Shimoji, and H. Seko, 2016: Ensemble data assimilation and forecast experiments for the September 2015 heavy rainfall event in Kanto and Tohoku regions with atmospheric motion vectors from Himawari-8. SOLA, 12, 209214, https://doi.org/10.2151/sola.2016-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipton, A. E., and G. D. Modica, 1999: Assimilation of visible-band satellite data for mesoscale forecasting in cloudy conditions. Mon. Wea. Rev., 127, 265278, https://doi.org/10.1175/1520-0493(1999)127<0265:AOVBSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macpherson, B., B. J. Wright, W. H. Hand, and A. J. Maycock, 1996: The impact of MOPS moisture data in the U.K. Meteorological Office mesoscale data assimilation scheme. Mon. Wea. Rev., 124, 17461766, https://doi.org/10.1175/1520-0493(1996)124<1746:TIOMMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meerkötter, R., and T. Zinner, 2007: Satellite remote sensing of cloud base height for convective cloud fields: A case study. Geophys. Res. Lett., 34, L17805, https://doi.org/10.1029/2007GL030347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140, 258265, https://doi.org/10.1175/MWR-D-10-05047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 32413258, https://doi.org/10.1175/MWR-D-17-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., T. L’Ecuyer, J. Haynes, S. Miller, and J. Turk, 2010: CloudSat precipitation profiling algorithm—Model description. J. Appl. Meteor. Climatol., 49, 9911003, https://doi.org/10.1175/2009JAMC2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J.-P. Muller, and E. E. Clothiaux, 2003: Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108, 4140, https://doi.org/10.1029/2002JD002887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., and Coauthors, 2017: Cloud-base height estimation from VIIRS. Part II: A statistical algorithm based on A-Train satellite data. J. Atmos. Oceanic Technol., 34, 585598, https://doi.org/10.1175/JTECH-D-16-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc., 145, 745766, https://doi.org/10.1002/qj.3463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otsuka, M., H. Seko, K. Shimoji, and K. Yamashita, 2018: Characteristics of Himawari-8 rapid scan atmospheric motion vectors utilized in mesoscale data assimilation. J. Meteor. Soc. Japan, 96B, 111131, https://doi.org/10.2151/jmsj.2018-034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C. A., and Coauthors, 2012: Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech., 5, 18891910, https://doi.org/10.5194/amt-5-1889-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poyer, A. J., and R. Lewis, 2009: ASOS product improvement ceilometer replacement testing. 89th Annual Meeting, Phoenix, AZ, Amer. Meteor. Soc., 12A.5, https://ams.confex.com/ams/pdfpapers/146103.pdf.

  • Renshaw, R., and P. N. Francis, 2011: Variational assimilation of cloud fraction in the operational Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 137, 19631974, https://doi.org/10.1002/qj.980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 27172737, https://doi.org/10.5194/gmd-11-2717-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res. Atmos., 124, 25462561, https://doi.org/10.1029/2018JD029643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheck, L., M. Weissmann, and B. Mayer, 2018: Efficient methods to account for cloud-top inclination and cloud overlap in synthetic visible satellite images. J. Atmos. Oceanic Technol., 35, 665685, https://doi.org/10.1175/JTECH-D-17-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, C. J., Y.-J. Noh, S. D. Miller, A. K. Heidinger, and D. T. Lindsey, 2017: Cloud-base height estimation from VIIRS. Part I: Operational algorithm validation against CloudSat. J. Atmos. Oceanic Technol., 34, 567583, https://doi.org/10.1175/JTECH-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., R. Vaishnav, M. V. Shukla, P. Kumar, P. Kumar, P. K. Thapliyal, S. Lal, and Y. B. Acharya, 2016: Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India. Atmos. Meas. Tech., 9, 711719, https://doi.org/10.5194/amt-9-711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., and F. T. Tveter, 2009: Assimilating humidity pseudo-observations derived from the cloud profiling radar aboard CloudSat in ALADIN 3D-Var. Meteor. Appl., 16, 461479, https://doi.org/10.1002/met.144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., 2010: Numerical weather prediction. Data Assimilation: Making Sense of Observations, W. Lahoz, B. Khattatov, and R. Menard, Eds., Springer Science and Business Media, 381–406.

    • Crossref
    • Export Citation
  • Wang, J., and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 22432258, https://doi.org/10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, P. D., R. Bennartz, and F. Fell, 2011: Retrieval of two-layer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res., 116, D16203, https://doi.org/10.1029/2011JD015883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2010: Guide to the Global Observing System. WMO Rep. 488, 215 pp, https://library.wmo.int/doc_num.php?explnum_id=4236.

  • WMO, 2011: Manual on codes—International codes, volume I.1, Annex II to the WMO Technical Regulations: Part A—Alphanumeric codes. WMO Rep. 306, 454 pp, https://library.wmo.int/doc_num.php?explnum_id=10235.

  • WMO, 2017: International Cloud Atlas: Manual on the observation of clouds and other meteors. WMO, https://cloudatlas.wmo.int/en/home.html.

  • Yamashita, K., 2016: Assimilation of Himawari-8 atmospheric motion vectors into the numerical weather prediction systems of Japan Meteorological Agency. Proc. 13th Int. Winds Workshop, Monterey, CA, EUMETSAT–NOAA–WMO, http://cimss.ssec.wisc.edu/iwwg/iww13/proceedings_iww13/index.html.

  • Young, A. H., J. J. Bates, and J. A. Curry, 2013: Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective clouds. J. Geophys. Res., 118, 46894699, https://doi.org/10.1002/jgrd.50306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D00K30, https://doi.org/10.1029/2010JD014030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 228 0 0
Full Text Views 570 259 10
PDF Downloads 454 196 13