• Ashkezari, M. D., C. N. Hill, C. N. Follett, G. Forget, and M. J. Follows, 2016: Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett., 43, 12 23412 241, https://doi.org/10.1002/2016GL071269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., J. L. Su, Z. J. Gan, and Q. Y. Liu, 2002: The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Cont. Shelf Res., 22, 22472264, https://doi.org/10.1016/S0278-4343(02)00073-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, https://doi.org/10.1016/j.pocean.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., G. Eldin, and B. Dewitte, 2009: Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83, 117123, https://doi.org/10.1016/j.pocean.2009.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, Q. Zhang, and X. Chu, 2010: The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Cont. Shelf Res., 30, 715723, https://doi.org/10.1016/j.csr.2009.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2010JC006716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., H. Xue, Y. Qi, G. Chen, Q. Mao, D. Wang, and F. Chai, 2014: An exceptional anticyclonic eddy in the South China Sea in 2010. J. Geophys. Res. Oceans, 119, 881897, https://doi.org/10.1002/2013JC009314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., G. Chen, and Y. Qi, 2020: Periodic mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans, 125, e2019JC015139, https://doi.org/10.1029/2019JC015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doglioli, A. M., B. Blanke, S. Speich, and G. Lapeyre, 2007: Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res., 112, C05043, https://doi.org/10.1029/2006JC003952.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duo, Z., W. Wang, and H. Wang, 2019: Oceanic mesoscale eddy detection method based on deep learning. Remote Sens., 11, 1921, https://doi.org/10.3390/rs11161921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. S. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Muennich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120, 74137449, https://doi.org/10.1002/2015JC011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., 1997: Warm eddy in the open sea east of Hainan Island [in Chinese with English abstract]. Huang-Bohai Haiyang, 4, 17.

  • He, Q., H. Zhan, S. Cai, Y. He, G. Huang, and W. Zhan, 2018: A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans, 123, 49064929, https://doi.org/10.1029/2018JC014054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, S. A., and A. C. Thomas, 2008: A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res. I, 55, 163176, https://doi.org/10.1016/j.dsr.2007.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q. Z., W. Z. Wang, Y. S. Li, C. W. Li, and M. Mao, 1992: General situations of the current and eddy in the South China Sea [in Chinese with English abstract]. Adv. Earth Sci., 7, 19.

    • Search Google Scholar
    • Export Citation
  • Jia, Y. L., and Q. Y. Liu, 2004: Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr., 60, 10631069, https://doi.org/10.1007/s10872-005-0014-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, J. Yang, Y. Zeng, and B. Wen, 2017: Submesoscale eddies in the Taiwan Strait observed by high-frequency radars: Detection algorithms and eddy properties. J. Atmos. Oceanic Technol., 34, 939953, https://doi.org/10.1175/JTECH-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lguensat, R., M. Sun, R. Fablet, E. Mason, P. Tandeo, and G. Chen, 2018: EddyNet: A deep neural network for pixel-wise classification of oceanic eddies. 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 1764–1767, https://doi.org/10.1109/IGARSS.2018.8518411.

    • Crossref
    • Export Citation
  • Li, J., T. Zu, L. Zeng, T. Li, J. Chen, and J. Yao, 2015: Preliminary analysis of the intraseasonal air-sea interaction influenced by Xisha warm eddy. Aquat. Ecosyst. Health Manage., 18, 386393, https://doi.org/10.1080/14634988.2015.1106909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., 2002: Advance in observation studies of upper layer circulation of the South China Sea [in Chinese with English abstract]. Taiwan Haixia, 21, 114125.

    • Search Google Scholar
    • Export Citation
  • Lian, Z., B. Sun, Z. Wei, Y. Wang, and X. Wang, 2019: Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. J. Atmos. Oceanic Technol., 36, 13611380, https://doi.org/10.1175/JTECH-D-18-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., C. Dong, D. Chen, Y. Liu, J. Yang, B. Zou, and Y. Guan, 2015: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Res. I, 99, 4664, https://doi.org/10.1016/j.dsr.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Dong, Y. Guan, D. Chen, J. McWilliams, and F. Nencioli, 2012: Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. I, 68, 5467, https://doi.org/10.1016/j.dsr.2012.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, P. Xiu, F. Chai, M. Shi, and P. Guo, 2011: Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res., 116, C12045, https://doi.org/10.1029/2011JC007386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110, C10021, https://doi.org/10.1029/2005JC002945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, https://doi.org/10.1029/2006GL028350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., and F. H. Post, 2000: Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24, 333341, https://doi.org/10.1016/S0097-8493(00)00029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, F., Y. Luo, and L. Xu, 2018: Volume and transport of eddy-trapped mode water south of the Kuroshio Extension. J. Geophys. Res. Oceans, 123, 87498761, https://doi.org/10.1029/2018JC014176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, J. M. A. C., C. B. Montegut, and P. Y. Le Traon, 2011: Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7, 317334, https://doi.org/10.5194/os-7-317-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., J. P. Xu, S. Q. Cai, and Q. Wang, 1999: Gyres and eddies in the South China Sea [in Chinese with English abstract]. Onset and Evolution of the South China Sea Monsoon and Its Interaction With the Ocean, China Meteorological Press, 272–279.

  • Sun, W. J., C. M. Dong, W. Tan, Y. Liu, Y. J. He, and J. Wang, 2018: Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sens., 10, 795, https://doi.org/10.3390/rs10050795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., H. Xu, J. Lin, and J. Hu, 2008: Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J. Oceanogr., 64, 925935, https://doi.org/10.1007/s10872-008-0076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. L. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2006: Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res., 111, C06002, https://doi.org/10.1029/2005JC003314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Du, J. Yi, N. Wang, and F. Liang, 2020: Mining evolution patterns from complex trajectory structures—A case study of mesoscale eddies in the South China Sea. ISPRS Int. J. Geoinf., 9, 441, https://doi.org/10.3390/ijgi9070441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., L. Zeng, W. Zhou, Q. Xie, S. Cai, J. Yao, and D. Wang, 2015: Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. J. Geophys. Res. Oceans, 120, 517532, https://doi.org/10.1002/2014JC009814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Li, Y. Qi, and G. Han, 2012: Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep-Sea Res. I, 61, 2133, https://doi.org/10.1016/j.dsr.2011.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in 2-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., L. Magaard, and J. Hager, 1976: Eddy energy in oceans. J. Geophys. Res., 81, 26412646, https://doi.org/10.1029/JC081i015p02641.

  • Xiao, F., D. Wang, L. Zeng, Q.-Y. Liu, and W. Zhou, 2019: Contrasting changes in the sea surface temperature and upper ocean heat content in the South China Sea during recent decades. Climate Dyn., 53, 15971612, https://doi.org/10.1007/s00382-019-04697-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Z. Qiu, and H. Chen, 1982: Overview of horizontal circulation in the South China Sea [in Chinese with English abstract]. Symposium on Hydrometeorology, Beijing Science Press, 137–145.

  • Yang, H., L. Wu, H. Liu, and Y. Yu, 2013: Eddy energy sources and sinks in the South China Sea. J. Geophys. Res. Oceans, 118, 47164726, https://doi.org/10.1002/jgrc.20343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and et al. , 2019: Eddy-induced transport of saline Kuroshio water into the northern South China Sea. J. Geophys. Res. Oceans, 124, 66736687, https://doi.org/10.1029/2018JC014847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, J., Y. Du, Z. He, and C. Zhou, 2014: Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Sci., 10, 3948, https://doi.org/10.5194/os-10-39-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, J., Y. Du, C. Zhou, F. Liang, and M. Yuan, 2015: Automatic identification of oceanic multieddy structures from satellite altimeter datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 15551563, https://doi.org/10.1109/JSTARS.2015.2417876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., and D. Wang, 2017: Seasonal variations in the barrier layer in the South China Sea: Characteristics, mechanisms and impact of warming. Climate Dyn., 48, 19111930, https://doi.org/10.1007/s00382-016-3182-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., Y. Du, S.-P. Xie, and D. Wang, 2009: Barrier layer in the South China Sea during summer 2000. Dyn. Atmos. Oceans, 47, 3854, https://doi.org/10.1016/j.dynatmoce.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., W. T. Liu, H. Xue, P. Xiu, and D. Wang, 2014: Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data. J. Geophys. Res. Oceans, 119, 82968314, https://doi.org/10.1002/2014JC010108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., E. P. Chassignet, R. W. Schmitt, X. Xu, and D. Wang, 2018: Salinification in the South China Sea since late 2012: A reversal of the freshening since the 1990s. Geophys. Res. Lett., 45, 27442751, https://doi.org/10.1002/2017GL076574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., R. W. Schmitt, L. Li, Q. Wang, and D. Wang, 2019: Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dyn., 53, 54955509, https://doi.org/10.1007/s00382-019-04878-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., H. Li, S. Liu, L. Shao, Z. Zhao, and H. Liu, 2015: Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea. Sci. China Earth Sci., 58, 22492259, https://doi.org/10.1007/s11430-015-5101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Q. Huang, and W. Wang, 1994: Diagnostic calculations for the seasonal-averaged current field in the deep water zone of the South China Sea [in Chinese with English abstract]. Trop. Oceanol., 13, 815.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, B. Qiu, and J. Tian, 2017: Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr., 47, 12431259, https://doi.org/10.1175/JPO-D-16-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 224 224 32
Full Text Views 73 73 20
PDF Downloads 90 90 22

Three Mesoscale Eddy Detection and Tracking Methods: Assessment for the South China Sea

View More View Less
  • 1 Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
  • | 2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 3 University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Complex topography and the Kuroshio eddy-shedding process produce active mesoscale eddy activity in the South China Sea (SCS). Three eddy detection and tracking methods, the Okubo–Weiss (O-W), vector-geometry (V-G), and winding-angle (W-A) algorithms, have been widely applied for eddy identification. This study provides a comprehensive assessment of the O-W, V-G, and W-A methods in the SCS, including their detection, statistical analysis, and tracking capabilities. The mean successful detection rates of the O-W, V-G, and W-A methods are 51.9%, 56.8%, and 61.4%, respectively. The O-W and V-G methods preferentially detect eddies with medium radii (½°–1°), whereas the W-A method tends to detect eddies with larger radii (>1°). The V-G method identifies an excessive number of weak (radius < ⅓°) eddylike structures in the SCS, accounting for 48.2% of the total eddy number. The highest mean excessive detection rate of the V-G method biases the data on eddy number, probability, and propagation direction. With the lowest mean successful tracking rate (STR), the O-W method might not be suitable for tracking long-lived eddies in the SCS. The V-G method performs well with regard to the overtracking issue and has the lowest mean questionable tracking rate of 1.1%. Among the three methods, the W-A method tracks eddies most accurately, with the highest mean STR of 80.6%. Overall, the W-A method produces reasonable statistical eddy characteristics and eddy tracking results. Each method has advantages and disadvantages, and researchers should choose wisely according to their needs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yikai Yang, yangyikai@scsio.ac.cn

Abstract

Complex topography and the Kuroshio eddy-shedding process produce active mesoscale eddy activity in the South China Sea (SCS). Three eddy detection and tracking methods, the Okubo–Weiss (O-W), vector-geometry (V-G), and winding-angle (W-A) algorithms, have been widely applied for eddy identification. This study provides a comprehensive assessment of the O-W, V-G, and W-A methods in the SCS, including their detection, statistical analysis, and tracking capabilities. The mean successful detection rates of the O-W, V-G, and W-A methods are 51.9%, 56.8%, and 61.4%, respectively. The O-W and V-G methods preferentially detect eddies with medium radii (½°–1°), whereas the W-A method tends to detect eddies with larger radii (>1°). The V-G method identifies an excessive number of weak (radius < ⅓°) eddylike structures in the SCS, accounting for 48.2% of the total eddy number. The highest mean excessive detection rate of the V-G method biases the data on eddy number, probability, and propagation direction. With the lowest mean successful tracking rate (STR), the O-W method might not be suitable for tracking long-lived eddies in the SCS. The V-G method performs well with regard to the overtracking issue and has the lowest mean questionable tracking rate of 1.1%. Among the three methods, the W-A method tracks eddies most accurately, with the highest mean STR of 80.6%. Overall, the W-A method produces reasonable statistical eddy characteristics and eddy tracking results. Each method has advantages and disadvantages, and researchers should choose wisely according to their needs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yikai Yang, yangyikai@scsio.ac.cn
Save