An Automated Python Algorithm to Quantify ZDR Arc and KDPZDR Separation Signatures in Supercells

Matthew B. Wilson University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Matthew B. Wilson in
Current site
Google Scholar
PubMed
Close
and
Matthew S. Van Den Broeke University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Matthew S. Van Den Broeke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Supercell thunderstorms often have pronounced signatures of hydrometeor size sorting within their forward-flank regions, including an arc-shaped region of high differential reflectivity (ZDR) along the inflow edge of the forward flank known as the ZDR arc and a clear horizontal separation between this area of high ZDR values and an area of enhanced KDP values deeper into the storm core. Recent work has indicated that ZDR arc and KDPZDR separation signatures in supercell storms may be related to environmental storm-relative helicity and low-level shear. Thus, characteristics of these signatures may be helpful to indicate whether a given storm is likely to produce a tornado. Although ZDR arc and KDPZDR separation signatures are typically easy to qualitatively identify in dual-polarization radar fields, quantifying their characteristics can be time-consuming and makes research into these signatures and their potential operational applications challenging. To address this problem, this paper introduces an automated Python algorithm to objectively identify and track these signatures in Weather Surveillance Radar-1988 Doppler (WSR-88D) data and quantify their characteristics. This paper will discuss the development of the algorithm, demonstrate its performance through comparisons with manually generated time series of ZDR arc and KDPZDR separation signature characteristics, and briefly explore potential uses of this algorithm in research and operations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew B. Wilson, mwilson41@huskers.unl.edu

Abstract

Supercell thunderstorms often have pronounced signatures of hydrometeor size sorting within their forward-flank regions, including an arc-shaped region of high differential reflectivity (ZDR) along the inflow edge of the forward flank known as the ZDR arc and a clear horizontal separation between this area of high ZDR values and an area of enhanced KDP values deeper into the storm core. Recent work has indicated that ZDR arc and KDPZDR separation signatures in supercell storms may be related to environmental storm-relative helicity and low-level shear. Thus, characteristics of these signatures may be helpful to indicate whether a given storm is likely to produce a tornado. Although ZDR arc and KDPZDR separation signatures are typically easy to qualitatively identify in dual-polarization radar fields, quantifying their characteristics can be time-consuming and makes research into these signatures and their potential operational applications challenging. To address this problem, this paper introduces an automated Python algorithm to objectively identify and track these signatures in Weather Surveillance Radar-1988 Doppler (WSR-88D) data and quantify their characteristics. This paper will discuss the development of the algorithm, demonstrate its performance through comparisons with manually generated time series of ZDR arc and KDPZDR separation signature characteristics, and briefly explore potential uses of this algorithm in research and operations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew B. Wilson, mwilson41@huskers.unl.edu
Save
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, https://doi.org/10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Crowe, C. C., W. A. Petersen, L. D. Carey, and D. J. Cecil, 2010: A dual-polarization investigation of tornado-warned cells associated with Hurricane Rita (2005). Electron. J. Oper. Meteor., 11 (4), https://nwafiles.nwas.org/ej/pdf/2010-EJ4.pdf.

    • Search Google Scholar
    • Export Citation
  • Crowe, C. C., C. Schultz, M. Kumjian, L. Carey, and W. Petersen, 2012: Use of dual-polarization signatures in diagnosing tornadic potential. Electron. J. Oper. Meteor., 13 (5), http://nwafiles.nwas.org/ej/pdf/2012-EJ5.pdf.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, https://doi.org/10.1175/JAS-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J., and W. Gallus, 2010: Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Géron, A., 2017: Hands-On Machine Learning with Scikit-Learn and Tensor Flow. 1st ed. O’Reilly, 543 pp.

  • Haberlie, A. M., and W. S. Ashley, 2018: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part I: Segmentation and classification. J. Appl. Meteor. Climatol., 57, 15751598, https://doi.org/10.1175/JAMC-D-17-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 15711600, https://doi.org/10.1175/MWR-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., 2018: Assessing storm motion to maximize storm relative helicity: Part II: Case examples of using the separation vector orientation to qualitatively estimate SRH. YouTube, https://www.youtube.com/watch?time_continue=2&v=LCKeC2KxU7I&feature=emb_logo.

  • Jurewicz, M., and C. Gitro, 2018: Incorporating dual-polarization signatures into the tornado warning process: KDP/ZDR separation signals, ZDR arc considerations, and initial results of hook echo investigations. Eighth Conf. on Transition of Research to Operation, Austin, TX, Amer. Meteor. Soc., 12B2, https://ams.confex.com/ams/98Annual/webprogram/Paper330719.html.

  • Kingfield, D. M., and J. C. Picca, 2018: Development of an operational convective nowcasting algorithm using raindrop size sorting information from polarimetric radar data. Wea. Forecasting, 33, 14771495, https://doi.org/10.1175/WAF-D-18-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, M., and K. Johnson, 2013: Applied Predictive Modeling. 1st ed. Springer, 600 pp.

    • Crossref
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 5 (6), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/93.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 11431157, https://doi.org/10.1175/WAF-D-18-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020GL088242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinaitis, S. M., 2017: Radar observations of tornado-warned convection associated with tropical cyclones over Florida. Wea. Forecasting, 32, 165186, https://doi.org/10.1175/WAF-D-16-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinney, 2010: Data structures for statistical computing in Python. Proc. Ninth Python in Science Conf., Austin, TX, SciPy, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a.

    • Crossref
    • Export Citation
  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. Walker, 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, https://doi.org/10.1175/JAMC-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, https://doi.org/10.1175/2011BAMS3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • QGIS Development Team, 2019: QGIS geographic information system. Open Source Geospatial Foundation Project, https://qgis.osgeo.org.

  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, https://doi.org/10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, D. T. Dawson, and Y. Jung, 2017: Simulations of polarimetric, X-band radar signatures in supercells. Part II: ZDR columns and rings and KDP columns. J. Appl. Meteor. Climatol., 56, 20012026, https://doi.org/10.1175/JAMC-D-16-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2016: Polarimetric variability of classic supercell storms as a function of environment. J. Appl. Meteor. Climatol., 55, 19071925, https://doi.org/10.1175/JAMC-D-15-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2017: Polarimetric radar metrics related to tornado life cycles and intensity in supercell storms. Mon. Wea. Rev., 145, 36713686, https://doi.org/10.1175/MWR-D-16-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pre-tornadic and nontornadic supercell storms. Mon. Wea. Rev., 148, 15671584, https://doi.org/10.1175/MWR-D-19-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172232, https://doi.org/10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and C. A. Van Den Broeke, 2015: Polarimetric radar observations from a waterspout-producing thunderstorm. Wea. Forecasting, 30, 329348, https://doi.org/10.1175/WAF-D-14-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic southern plains supercells. J. Appl. Meteor. Climatol., 47, 12321247, https://doi.org/10.1175/2007JAMC1714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 549 0 0
Full Text Views 1029 420 23
PDF Downloads 1290 495 29