• Belkin, I. M., and J. E. O’Reilly, 2009: An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst., 78, 319326, https://doi.org/10.1016/j.jmarsys.2008.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., P. C. Cornillon, and K. Sherman, 2009: Fronts in large marine ecosystems. Prog. Oceanogr., 81, 223236, https://doi.org/10.1016/j.pocean.2009.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, P. C., 2003: SST fronts of the Pacific coastal and marginal seas. Pac. Oceanogr., 1, 90113.

  • Bost, C. A., C. Cotté, F. Bailleul, Y. Cherel, J. B. Charrassin, C. Guinet, D. G. Ainley, and H. Weimerskirch, 2009: The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst., 78, 363376, https://doi.org/10.1016/j.jmarsys.2008.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canny, J., 1986: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8, 679698, https://doi.org/10.1109/TPAMI.1986.4767851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnes, M. R., 2009: Description and evaluation of GDEM-V 3.0. Naval Research Laboratory Rep. NRL/MR/7330--09-9165, 24 pp., https://www7320.nrlssc.navy.mil/pubs/2009/carnes-2009.pdf.

  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111, C09026, https://doi.org/10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Cayula, J.-F., and P. Cornillon, 1992: Edge detection algorithm for SST images. J. Atmos. Oceanic Technol., 9, 6780, https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayula, J.-F., and P. Cornillon, 1995: Multi-image edge detection for SST images. J. Atmos. Oceanic Technol., 12, 821829, https://doi.org/10.1175/1520-0426(1995)012<0821:MIEDFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, E. M., and A. C. Mask, 2019: Detection of fronts as a metric for numerical model accuracy. J. Atmos. Oceanic Technol., 36, 15471561, https://doi.org/10.1175/JTECH-D-18-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, F., and Coauthors, 2015: Recent progress in performance evaluations and near real-time assessment of operational ocean products. J. Oper. Oceanogr., 8, s221s238, https://doi.org/10.1080/1755876X.2015.1050282.

    • Search Google Scholar
    • Export Citation
  • Hernandez, F., G. Smith, K. Baetens, G. Cossarini, and K. v. Schuckmann, 2018: Measuring performances, skill and accuracy in operational oceanography: New challenges and approaches. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 759–796, https://doi.org/10.17125/gov2018.ch29.

    • Crossref
    • Export Citation
  • Jing, Z., Y. Qi, Y. Du, S. Zhang, and L. Xie, 2015: Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. J. Geophys. Res. Oceans, 120, 19932006, https://doi.org/10.1002/2014JC010601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., Y. Qi, B. Fox-Kemper, Y. Du, and S. Lian, 2016: Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. J. Geophys. Res. Oceans, 121, 19141930, https://doi.org/10.1002/2015JC011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazmin, A. S., and M. M. Rienecker, 1996: Variability and frontogenesis in the large-scale oceanic frontal zones. J. Geophys. Res., 101, 907921, https://doi.org/10.1029/95JC02992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirches, G., M. Paperin, H. Klein, C. Brockmann, and K. Stelzer, 2016: GRADHIST—A method for detection and analysis of oceanic fronts from remote sensing data. Remote Sens. Environ., 181, 264280, https://doi.org/10.1016/j.rse.2016.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X.-d., J.-s. Li, and Y. Li, 2019: Discussion on the operational mesoscale eddy verification method (in Chinese). Mar. Forecasts, 36 (2), 18, https://doi.org/10.11737/j.issn.1003-0239.2019.02.001.

    • Search Google Scholar
    • Export Citation
  • Lan, K. W., H. Kawamura, M. A. Lee, Y. Chang, J. W. Chan, and C. H. Liao, 2009: Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank. Cont. Shelf Res., 29, 903910, https://doi.org/10.1016/j.csr.2009.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci., 14, 10931126, https://doi.org/10.5194/os-14-1093-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. T., A. E. Newhall, and J. F. Lynch, 2006: The effect of an ocean front on sound propagation in shallow water. J. Acoust. Soc. Amer., 120, 3182, https://doi.org/10.1121/1.4787988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P., 2004: Multi-spectral front maps for automatic detection of ocean colour features from SeaWiFS. Int. J. Remote Sens., 25, 14371442, https://doi.org/10.1080/01431160310001592409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P., 2009: Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data. J. Mar. Syst., 78, 327336, https://doi.org/10.1016/j.jmarsys.2008.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. I., and S. Christodoulou, 2014: Frequent locations of oceanic fronts as an indicator of pelagic diversity: Application to marine protected areas and renewables. Mar. Policy, 45, 318329, https://doi.org/10.1016/j.marpol.2013.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, K., H. Demarcq, and S. McClatchie, 2012: Mesoscale frontal structures in the Canary Upwelling System: New front and filament detection algorithms applied to spatial and temporal patterns. Remote Sens. Environ., 123, 339346, https://doi.org/10.1016/j.rse.2012.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oram, J. J., J. C. McWilliams, and K. D. Stolzenbach, 2008: Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight. Remote Sens. Environ., 112, 23972415, https://doi.org/10.1016/j.rse.2007.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roa-Pascuali, L., H. Demarcq, and A. E. Nieblas, 2015: Detection of mesoscale thermal fronts from 4 km data using smoothing techniques: Gradient-based fronts classification and basin scale application. Remote Sens. Environ., 164, 225237, https://doi.org/10.1016/j.rse.2015.03.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, A. G., and Coauthors, 2015: GODAE OceanView Class 4 forecast verification framework: Global ocean inter-comparison. J. Oper. Oceanogr., 8, s98s111, https://doi.org/10.1080/1755876X.2015.1022330.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scales, K. L., P. I. Miller, L. A. Hawkes, S. N. Ingram, D. W. Sims, and S. C. Votier, 2014: On the front line: Frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol., 51, 15751583, https://doi.org/10.1111/1365-2664.12330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, R., X. Guo, D. Wang, L. Zeng, and J. Chen, 2015: Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea. Deep-Sea Res. II, 119, 3039, https://doi.org/10.1016/j.dsr2.2013.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suberg, L. A., P. I. Miller, and R. B. Wynn, 2019: On the use of satellite-derived frontal metrics in time series analyses of shelf-sea fronts, a study of the Celtic Sea. Deep-Sea Res. I, 149, 103033, https://doi.org/10.1016/j.dsr.2019.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., and P. C. Cornillon, 1999: Satellite-derived sea surface temperature fronts on the continental shelf off the northeast US coast. J. Geophys. Res., 104, 23 45923 478, https://doi.org/10.1029/1999JC900133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., and P. C. Cornillon, 2000: Evaluation of front detection methods for satellite-derived SST data using in situ observations. J. Atmos. Oceanic Technol., 17, 16671675, https://doi.org/10.1175/1520-0426(2000)017<1667:EOFDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. C., F. E. Muller-Karger, M. A. Roffer, C. Hu, W. Yao, and M. E. Luther, 2008: Satellite remote sensing of surface oceanic fronts in coastal waters off west–central Florida. Remote Sens. Environ., 112, 29632976, https://doi.org/10.1016/j.rse.2008.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., Y. Liu, Y. Q. Qi, and P. Shi, 2001: Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophys. Res. Lett., 28, 39633966, https://doi.org/10.1029/2001GL013306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Li, C. Wang, and Y. Yan, 2012: Interactions among the winter monsoon, ocean eddy and ocean thermal front in the South China Sea. J. Geophys. Res., 117, C08002, https://doi.org/10.1029/2012JC008007.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Yu, Y. Zhang, H. R. Zhang, and F. Chai, 2020: Distribution and variability of sea surface temperature fronts in the South China sea. Estuarine Coastal Shelf Sci., 240, 106793, https://doi.org/10.1016/j.ecss.2020.106793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., and S. Y. Litvin, 2015: Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. USA, 112, 17101715, https://doi.org/10.1073/pnas.1417143112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., I. Belkin, J. Chen, and D. Wang, 2012: Thermal fronts of the southern South China Sea from satellite and in situ data. Int. J. Remote Sens., 33, 74587468, https://doi.org/10.1080/01431161.2012.685985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., I. M. Belkin, S. Peng, and Y. Li, 2014: East Hainan upwelling fronts detected by remote sensing and modelled in summer. Int. J. Remote Sens., 35, 44414451, https://doi.org/10.1080/01431161.2014.916443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., X. Li, J. Hu, Z. Sun, J. Zhu, and Z. Chen, 2014: Summertime sea surface temperature and salinity fronts in the southern Taiwan Strait. Int. J. Remote Sens., 35, 44524466, https://doi.org/10.1080/01431161.2014.916454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., C. Yang, and Y. Luo, 2014: An ocean front detection method based on the Canny operator and mathematical morphology (in Chinese). Mar. Sci. Bull., 33, 199203.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and Coauthors, 2016: Comparison and validation of global and regional ocean forecasting systems for the South China Sea. Nat. Hazards Earth Syst. Sci., 16, 16391655, https://doi.org/10.5194/nhess-16-1639-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 37
Full Text Views 12 12 4
PDF Downloads 15 15 7

Detection of SST Fronts from a High-Resolution Model and Its Preliminary Results in the South China Sea

View More View Less
  • 1 Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing, China
  • 2 Mercator Océan, Ramonville Saint Agne, France
  • 3 Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
© Get Permissions
Restricted access

Abstract

A frontal detection algorithm is developed with the capability of detecting significant frontal segments of sea surface temperature (SST) in the high-resolution South China Sea Operational Forecasting System (SCSOFS). To effectively obtain frontal information, a gradient-based Canny edge detection algorithm is improved with postprocessing designed for high-resolution numerical models, aiming at extracting primary ocean fronts while ensuring the balance of frontal continuity and positioning accuracy. Metrics of frontal probability and strength are used to measure the robustness of the results in terms of mean state and seasonal variability of frontal activities in the South China Sea (SCS). Most fronts are found in the nearshore and form a strip shape extending from the Taiwan Strait to the coast of Vietnam. The SCSOFS is found to reproduce strong seasonal signals dominating the variability of the frontal strength and occurrence probability in the SCS. We implement the algorithm on the daily averaged SST derived from two other SST analyses for intercomparison in the SCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xueming Zhu, zhuxm@nmefc.cn

Abstract

A frontal detection algorithm is developed with the capability of detecting significant frontal segments of sea surface temperature (SST) in the high-resolution South China Sea Operational Forecasting System (SCSOFS). To effectively obtain frontal information, a gradient-based Canny edge detection algorithm is improved with postprocessing designed for high-resolution numerical models, aiming at extracting primary ocean fronts while ensuring the balance of frontal continuity and positioning accuracy. Metrics of frontal probability and strength are used to measure the robustness of the results in terms of mean state and seasonal variability of frontal activities in the South China Sea (SCS). Most fronts are found in the nearshore and form a strip shape extending from the Taiwan Strait to the coast of Vietnam. The SCSOFS is found to reproduce strong seasonal signals dominating the variability of the frontal strength and occurrence probability in the SCS. We implement the algorithm on the daily averaged SST derived from two other SST analyses for intercomparison in the SCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xueming Zhu, zhuxm@nmefc.cn
Save