• Barnes, L. R., D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and C. C. Benight, 2009: Corrigendum: False alarm rate or false alarm ratio? Wea. Forecasting, 24, 14521454, https://doi.org/10.1175/2009WAF2222300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., and et al. , 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, https://doi.org/10.1109/TGRS.2011.2158438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., and et al. , 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part II. Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Trans. Geosci. Remote Sens., 51, 46504671, https://doi.org/10.1109/TGRS.2013.2258161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., R. E. J. Kelly, J. L. Foster, and D. K. Hall, 2003: Global SWE monitoring using AMSR-E data. 2003 IEEE Int. Geoscience and Remote Sensing Symp. Proc., Vol. 1, Toulouse, France, IEEE, 680–682, https://doi.org/10.1109/IGARSS.2003.1293880.

    • Crossref
    • Export Citation
  • Dietz, A. J., C. Kuenzer, U. Gessner, and S. Dech, 2012: Remote sensing of snow—A review of available methods. Int. J. Remote Sens., 33, 40944134, https://doi.org/10.1080/01431161.2011.640964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., E. A. Smith, W. Berg, and G. J. Huffman, 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600, https://doi.org/10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, https://doi.org/10.1175/2010JTECHA1454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Berechnung des Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungsdienst (Measures of success and goodness of wind force forecasts by the gale-warning service). Geogr. Ann., 8, 301349.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quart. J. Roy. Meteor. Soc., 144, 313328, https://doi.org/10.1002/qj.3175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kongoli, C., C. A. Dean, S. R. Helfrich, and R. R. Ferraro, 2007: Evaluating the potential of a blended passive microwave-interactive multi-sensor product for improved mapping of snow cover and estimations of snow water equivalent. Hydrol. Processes, 21, 15971607, https://doi.org/10.1002/hyp.6722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318, https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and et al. , 2017: Global Precipitation Measurement (GPM) Mission. NASA Algorithm Theoretical Basis Doc., 63 pp., https://pmm.nasa.gov/sites/default/files/document_files/ATBD_GPM_GPROF_June1_2017.pdf.

  • Levizzani, V., C. Kidd, D. Kirschbaum, C. Kummerow, K. Nakamura, and F. Turk, Eds., 2020: Satellite Precipitation Measurement. Advances in Global Change Research, Vol. 67, Springer, 450 pp.

    • Crossref
    • Export Citation
  • Mätzler, C., 1994: Passive microwave signatures of landscapes in winter. Meteor. Atmos. Phys., 54, 241260, https://doi.org/10.1007/BF01030063.

  • Meng, H., J. Dong, R. Ferraro, B. Yan, L. Zhao, C. Kongoli, N.-Y. Wang, and B. Zavodsky, 2017: A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers. J. Geophys. Res. Atmos., 122, 65206540, https://doi.org/10.1002/2016JD026325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., S. Ringerud, L. Brucker, Y. You I. de Gelis, and C. Prigent, 2020: An active-passive microwave land surface database from GPM.IEEE Trans. Geosci. Remote Sens., 58, 62246242, https://doi.org/10.1109/TGRS.2020.2975477.

    • Search Google Scholar
    • Export Citation
  • NASA PPS and X-Cal Working Group, 2017: NASA Global Precipitation Measurement level GPM 1C algorithms, version 1.8. NASA Algorithm Theoretical Basis Doc., 81 pp., https://pps.gsfc.nasa.gov/Documents/L1C_ATBD.pdf.

  • Olson, W. S., C. D. Kummerow, G. M. Heymsfield, and L. Giglio, 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35, 17631789, https://doi.org/10.1175/1520-0450(1996)035<1763:AMFCPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. F. Krajewski, 1996: Satellite estimation of precipitation over land. Hydrol. Sci. J., 41, 433451, https://doi.org/10.1080/02626669609491519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shahroudi, N., and W. Rossow, 2014: Using land surface microwave emissivities to isolate the signature of snow on different surface types. Remote Sens. Environ., 152, 638653, https://doi.org/10.1016/j.rse.2014.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and et al. , 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., C. Kummerow, and A. Mugnai, 1994: The emergence of inversion-type profile algorithms for estimation of precipitation from satellite passive microwave measurements. Remote Sens. Rev., 11, 211242, https://doi.org/10.1080/02757259409532266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and et al. , 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part III—Identification of optimal meteorological tags. Nat. Hazards Earth Syst. Sci., 13, 11851208, https://doi.org/10.5194/nhess-13-1185-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, 2017: Improving overland precipitation retrieval with brightness temperature temporal variation. J. Hydrometeor., 18, 23552383, https://doi.org/10.1175/JHM-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, https://doi.org/10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 14
Full Text Views 80 80 1
PDF Downloads 99 99 1

Applications of Dynamic Land Surface Information for Passive Microwave Precipitation Retrieval

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 NASA Goddard Space Flight Center Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h−1) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Ringerud, sarah.e.ringerud@nasa.gov

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Abstract

Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h−1) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Ringerud, sarah.e.ringerud@nasa.gov

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Save