• Abe, M., K. Shimoji, and K. Nonaka, 2018: Reprocessing of atmospheric motion vectors for JRA-3Q at JMA/MSC. Proc. 14th Int. Winds Workshop, Jeju City, South Korea, International Winds Working Group.

  • Baker, N. L., T. F. Hogan, W. F. Campbell, R. L. Pauley, and S. D. Swadley, 2005: The impact of AMSU-A radiance assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS) Naval Research Lab Rep. NRL/MR/7530-05-8836, 22 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a429811.pdf.

  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., and et al. , 2018: Observations for reanalyses. Bull. Amer. Meteor. Soc., 99, 18511866, https://doi.org/10.1175/BAMS-D-17-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., K. Wargan, A. M. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of quasi-biennial oscillations in MERRA-2. J. Climate, 29, 53395354, https://doi.org/10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, https://doi.org/10.1256/qj.05.137.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, P., and D. Pawlak, 2000: MetOp: The space segment for EUMETSAT’s polar system. ESA Bull., 102, 618.

  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126, 29112932, https://doi.org/10.1002/QJ.49712656915.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2019: User guide for EUMETSAT GSICS corrections for inter-calibration of Meteosat-SEVIRI with MetOp-IASI. EUMETSAT Doc. EUM/TSS/MAN/15/803180, 12 pp., https://www-cdn.eumetsat.int/files/2020-08/User%20Guide%20for%20EUMETSAT%20GSICS%20Corrections%20for%20inter-calibration%20of%20Meteosat-SEVIRI%20with%20Metop-IASI.pdf.

  • Eyre, J. R., 2016: Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Quart. J. Roy. Meteor. Soc., 142, 22842291, https://doi.org/10.1002/qj.2819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and et al. , 2016: NOAA Climate Data Record (CDR) of Advanced Microwave Sounding Unit (AMSU)-A, version 1.0. NOAA National Centers for Environmental Information, accessed 28 July 2018, https://doi.org/10.7289/V53R0QXD.

    • Crossref
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M., and et al. , 2011: The Global Space-Based Inter-Calibration System. Bull. Amer. Meteor. Soc., 92, 467475, https://doi.org/10.1175/2010BAMS2967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 13771403, https://doi.org/10.1175/JCLI4050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, https://doi.org/10.1175/JCLI-D-11-00668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 14531468, https://doi.org/10.1002/qj.49712757418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2018, Operational global reanalysis: progress, future directions and synergies with NWP. ERA Rep. Series 27, 65 pp., https://www.ecmwf.int/node/18765.

  • Holmlund, K., L. van de Berg, J. Gustafsson, A. de Smet, M. Carranza, G. Dew, and R. Borde, 2010: Current status of EUMETSAT operational winds. Proc. 10th Int. Winds Workshop, Tokyo, Japan, International Winds Working Group.

  • Kidwell, K., and et al. , 2014: NOAA KLM user’s guide with NOAA-N, N Prime, and MetOp supplements. NOAA Doc., 2530 pp., https://www1.ncdc.noaa.gov/pub/data/satellite/publications/podguides/N-15%20thru%20N-19/pdf/0.0%20NOAA%20KLM%20Users%20Guide.pdf.

  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köpken, C., G. Kelly, and J.-N. Thépaut, 2004: Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Quart. J. Roy. Meteor. Soc., 130, 22772292, https://doi.org/10.1256/qj.02.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W. R., L Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Sienkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. Series on Global Modeling and Data Assimilation 46, 64 pp., NASA/TM-2016-104606.

  • Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, 2001: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys. Res. Lett., 28, 13911394, https://doi.org/10.1029/2000GL012189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, T., 1996: Prelaunch calibration of the Advanced Microwave Sounding Unit-A for NOAA-K. IEEE Trans. Microwave Theory Tech., 44, 14601469, https://doi.org/10.1109/22.536029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, T., 1999: AMSU-A antenna pattern corrections. IEEE Trans. Geosci. Remote Sens., 37, 103112, https://doi.org/10.1109/36.739131.

  • Mo, T., and Q. Liu, 2008: A study of AMSU-A measurement of brightness temperatures over the ocean. J. Geophys. Res., 113, D17120, https://doi.org/10.1029/2008JD009784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suárez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., and R. Saunders, 2015: A review of Stratospheric Sounding Unit radiance observations for climate trends and reanalyses. Quart. J. Roy. Meteor. Soc., 141, 21032113, https://doi.org/10.1002/qj.2505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawson, S., 2012: Representation of the middle-to-upper stratosphere in MERRA. Global Modeling and Assimilation Office annual report and research highlights, GMAO Rep., 42–43, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130008574.pdf#page=46.

  • Pawson, S., K. Wargan, L. Coy, and W. McCarty, 2014: Use of EOS-AURA in observation in the MERRA-2 Reanalysis. 10th Aura Science Team Meeting, Greenbelt, MD, NASA, GSFC-E-DAA-TN17176.

  • Polavarapu, S., T. G. Shepherd, Y. Rochon, and S. Ren, 2005: Some challenges of middle atmosphere data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35133527, https://doi.org/10.1256/qj.05.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., R. Saunders, and D. Santek, 2015: Rescuing satellite data for climate reanalysis, ECMWF Newsletter, No. 144, ECMWF, Reading, United Kingdom, 8–9, https://www.ecmwf.int/file/28421/download?token=mk8h7RTu.

  • Rienecker, M. M., and et al. , 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, 118 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tradowsky, J. S., G. E. Bodeker, R. R. Querel, P. J. H. Builtjes, and J. Fischer, 2018: Combining data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature. Earth Syst. Sci. Data, 10, 21952211, https://doi.org/10.5194/essd-10-2195-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and C.-Z. Zou, 2014: AMSU-A-only atmospheric temperature data records from the lower troposphere to the top of the stratosphere. J. Atmos. Oceanic Technol., 31, 808825, https://doi.org/10.1175/JTECH-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanzong, S., D. Santek, C. Velden, J. Daniels, D. Stettner, W. Bresky, and A. Bailey, 2014: Historical GOES AMV reprocessing. 12th Int. Winds Workshop, Copenhagen, Denmark, University of Copenhagen.

  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., A. Kumar, and W. Wang, 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res., 117, D08105, https://doi.org/10.1029/2011JD017347.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and et al. , 2014: Variational bias correction in the NCEP’s data assimilation system. 19th Int. TOVS Study Conf., Jeju Island, South Korea, International TOVS Working Group, https://www.wcrp-climate.org/WGNE/BlueBook/2015/individual-articles/01_Zhu_Yanqiu_RadianceBias.pdf.

  • Zou, C.-Z., and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, https://doi.org/10.1029/2011JD016205.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, C. Cao, and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, https://doi.org/10.1029/2005JD006798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., and et al. , 2013: NOAA Fundamental Climate Data Record (FCDR) of AMSU-A level 1c brightness temperature, version 1.0. NOAA National Climatic Data Center, accessed 20 July 2018, https://doi.org/10.7289/V5X63JT2.

    • Crossref
    • Export Citation
  • Zou, C.-Z., W. Wang, and X. Hao, 2016: AMSU brightness temperature—NOAA and AMSU brightness temperature—NOAA gridded. NOAA/NESDIS Climate Algorithm Theoretical Basis Doc., Revision 2, CDRP-ATBD-0345, 82 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/AMSU%20Brightness%20Temperatures/AlgorithmDescription_01B-18_18a.pdf.

All Time Past Year Past 30 Days
Abstract Views 128 128 14
Full Text Views 34 34 5
PDF Downloads 36 36 9

Assessing Sensitivity of MERRA-2 to AMSU-A in the Upper Stratosphere

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland
  • | 2 Science System and Application Inc., Beltsville, Maryland
  • | 3 Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Microwave temperature sounders provide key observations in data assimilation, both in the current and historical global observing systems, as they provide the largest amount of horizontal and vertical temperature information due to their insensitivity to clouds. In the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), microwave sounder radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) are assimilated beginning with NOAA-15 and continuing through the current period. The time series of observation minus background statistics for AMSU-A channels sensitive to the upper stratosphere and lower mesosphere show variabilities due to changes in the AMSU-A constellation in the early AMSU-A period. Noted discrepancies are seen at the onset and exit of AMSU-A observations on the NOAA-15, NOAA-16, NOAA-17, and NASA EOS Aqua satellites. This effort characterizes the sensitivity, both in terms of the observations and the MERRA-2 data. Furthermore, it explores the use of reprocessed and intercalibrated datasets to evaluate whether these homogenized observations can reduce the disparity due to change in instrumental biases against the model background. The results indicate that the AMSU-A radiances used in MERRA-2 are the fundamental cause of this interplatform sensitivity, which can be mitigated by using reprocessed data. The results explore the importance of the reprocessing of the AMSU-A radiances as well as their intercalibration.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Mohar Chattopadhyay, mohar.chattopadhyay@nasa.gov

Abstract

Microwave temperature sounders provide key observations in data assimilation, both in the current and historical global observing systems, as they provide the largest amount of horizontal and vertical temperature information due to their insensitivity to clouds. In the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), microwave sounder radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) are assimilated beginning with NOAA-15 and continuing through the current period. The time series of observation minus background statistics for AMSU-A channels sensitive to the upper stratosphere and lower mesosphere show variabilities due to changes in the AMSU-A constellation in the early AMSU-A period. Noted discrepancies are seen at the onset and exit of AMSU-A observations on the NOAA-15, NOAA-16, NOAA-17, and NASA EOS Aqua satellites. This effort characterizes the sensitivity, both in terms of the observations and the MERRA-2 data. Furthermore, it explores the use of reprocessed and intercalibrated datasets to evaluate whether these homogenized observations can reduce the disparity due to change in instrumental biases against the model background. The results indicate that the AMSU-A radiances used in MERRA-2 are the fundamental cause of this interplatform sensitivity, which can be mitigated by using reprocessed data. The results explore the importance of the reprocessing of the AMSU-A radiances as well as their intercalibration.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Corresponding author: Mohar Chattopadhyay, mohar.chattopadhyay@nasa.gov
Save