Dual-Polarization Deconvolution and Geophysical Retrievals from the Advanced Microwave Precipitation Radiometer during OLYMPEX/RADEX

Corey G. Amiot Department of Atmospheric and Earth Science, The University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Corey G. Amiot in
Current site
Google Scholar
PubMed
Close
,
Sayak K. Biswas The Aerospace Corporation, El Segundo, California

Search for other papers by Sayak K. Biswas in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Lang NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
, and
David I. Duncan European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by David I. Duncan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation Radiometer (AMPR) have yielded physically realistic brightness temperatures (Tb) from the Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization Tb were converted to horizontally and vertically polarized Tb via dual-polarization deconvolution, and linear regression equations were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using simulated AMPR Tb and modeled atmospheric profiles. These equations were tested using AMPR Tb collected during four OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results from the same dataset, while WV and WS were also compared with in situ data. Geophysical calculations using simulated Tb yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS root-mean-square deviations (RMSD) were 0.11 mm, 1.28 mm, and 1.11 m s−1, respectively, with median absolute deviations (MedAD) of 2.26 × 10−2 mm, 0.22 mm, and 0.55 m s−1, respectively. When applied to OLYMPEX/RADEX data, the new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 × 10−2 mm, 2.00 mm, and 2.35 m s−1, respectively, and MedAD were 2.88 × 10−2 mm, 1.14 mm, and 1.82 m s−1, respectively. WV MedAD between the new equations and dropsondes were 2.10 and 1.80 mm at the time and location of minimum dropsonde altitude, respectively, while WS MedAD were 1.15 and 1.53 m s−1, respectively, further indicating the utility of these equations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-19-0218.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Corey G. Amiot, ca0019@uah.edu

Abstract

Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation Radiometer (AMPR) have yielded physically realistic brightness temperatures (Tb) from the Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization Tb were converted to horizontally and vertically polarized Tb via dual-polarization deconvolution, and linear regression equations were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using simulated AMPR Tb and modeled atmospheric profiles. These equations were tested using AMPR Tb collected during four OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results from the same dataset, while WV and WS were also compared with in situ data. Geophysical calculations using simulated Tb yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS root-mean-square deviations (RMSD) were 0.11 mm, 1.28 mm, and 1.11 m s−1, respectively, with median absolute deviations (MedAD) of 2.26 × 10−2 mm, 0.22 mm, and 0.55 m s−1, respectively. When applied to OLYMPEX/RADEX data, the new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 × 10−2 mm, 2.00 mm, and 2.35 m s−1, respectively, and MedAD were 2.88 × 10−2 mm, 1.14 mm, and 1.82 m s−1, respectively. WV MedAD between the new equations and dropsondes were 2.10 and 1.80 mm at the time and location of minimum dropsonde altitude, respectively, while WS MedAD were 1.15 and 1.53 m s−1, respectively, further indicating the utility of these equations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-19-0218.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Corey G. Amiot, ca0019@uah.edu

Supplementary Materials

    • Supplemental Materials (PDF 290.47 KB)
Save
  • Amarin, R. A., W. L. Jones, S. F. El-Nimri, J. W. Johnson, C. S. Ruf, T. L. Miller, and E. Uhlhorn, 2012: Hurricane wind speed measurements in rainy conditions using the airborne Hurricane Imaging Radiometer (HIRAD). IEEE Trans. Geosci. Remote Sens., 50, 180192, https://doi.org/10.1109/TGRS.2011.2161637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Precipitable water. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Precipitable_water.

  • Berg, W., M. R. P. Sapiano, J. Horsman, and C. Kummerow, 2013: Improved geolocation and Earth incidence angle information for a fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 15041513, https://doi.org/10.1109/TGRS.2012.2199761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhargava, K., E. Kalnay, J. A. Carton, and F. Yang, 2018: Estimation of systematic errors in the GFS using analysis increments. J. Geophys. Res. Atmos., 123, 16261637, https://doi.org/10.1002/2017JD027423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, S. K., S. Farrar, K. Gopalan, A. Santos-Garcia, W. L. Jones, and S. Bilanow, 2013: Intercalibration of microwave radiometer brightness temperatures for the Global Precipitation Measurement Mission. IEEE Trans. Geosci. Remote Sens., 51, 14651477, https://doi.org/10.1109/TGRS.2012.2217148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, S. K., T. J. Lang, D. Duncan, and C. Kummerow, 2017: Polarization deconvolution and geophysical retrieval from a dual-pol, cross-track scanning microwave radiometer (AMPR) during OLYMPEX/RADEX. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract H32C-07.

  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of oceanic precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48, 13351344, https://doi.org/10.1175/2009JAMC2149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and S. K. Biswas, 2017: Hurricane Imaging Radiometer (HIRAD) wind speed retrievals and validation using dropsondes. J. Atmos. Oceanic Technol., 34, 18371851, https://doi.org/10.1175/JTECH-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., K. R. Quinlan, and D. M. Mach, 2010: Intense convection observed by NASA ER-2 in Hurricane Emily (2005). Mon. Wea. Rev., 138, 765780, https://doi.org/10.1175/2009MWR3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, D. I., and C. D. Kummerow, 2016: A 1DVAR retrieval applied to GMI: Algorithm description, validation, and sensitivities. J. Geophys. Res. Atmos., 121, 74157429, https://doi.org/10.1002/2016JD024808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. Turk, T. Wong, and G. L. Stephens, 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260279, https://doi.org/10.1175/1520-0450-34.1.260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T., and K. Young, 2017: GPM ground validation Advanced Vertical Atmospheric Profiling System (AVAPS) OLYMPEX. NASA Global Hydrology Resource Center DAAC, accessed 13 June 2019, https://doi.org/10.5067/GPMGV/OLYMPEX/AVAPS/DATA101.

    • Crossref
    • Export Citation
  • Hong, S., and I. Shin, 2013: Wind speed retrieval based on sea surface roughness measurements from spaceborne microwave radiometers. J. Appl. Meteor. Climatol., 52, 507516, https://doi.org/10.1175/JAMC-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., and D. J. Cecil, 2015: Signatures of hydrometeor species from airborne passive microwave data for frequencies 10–183 GHz. J. Appl. Meteor. Climatol., 54, 13131334, https://doi.org/10.1175/JAMC-D-14-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air. Radio Sci., 20, 10691089, https://doi.org/10.1029/RS020i005p01069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1989: MPM—An atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves, 10, 631650, https://doi.org/10.1007/BF01009565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 659675, https://doi.org/10.1007/BF01008897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGaughey, G., E. J. Zipser, R. W. Spencer, and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, https://doi.org/10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, https://doi.org/10.1109/TGRS.2011.2179662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445, https://doi.org/10.1002/ANDP.19083300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed 3 April 2017, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739, https://doi.org/10.1175/2007JCLI1958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepmeier, J. R., D. G. Long, and E. G. Njoku, 2008: Stokes antenna temperatures. IEEE Trans. Geosci. Remote Sens., 46, 516527, https://doi.org/10.1109/TGRS.2007.909597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Rosenkranz, P. W., 1993: Absorption of microwaves by atmospheric gases. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., Wiley Series in Remote Sensing and Image Processing, Vol. 6, John Wiley and Sons, 37–90.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, https://doi.org/10.1029/98RS01182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, and D. Waliser, 2019: In-orbit performance of the constellation of CYGNSS hurricane satellites. Bull. Amer. Meteor. Soc., 100, 20092023, https://doi.org/10.1175/BAMS-D-18-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., and C. D. Kummerow, 2019: An optimal estimation retrieval algorithm for microwave humidity sounding channels with minimal scan position bias. J. Atmos. Oceanic Technol., 36, 409425, https://doi.org/10.1175/JTECH-D-18-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., C. D. Kummerow, W. Berg, S. C. Reising, S. T. Brown, T. C. Gaier, B. H. Lim, and S. Padmanabhan, 2020: A passive microwave retrieval algorithm with minimal view-angle bias: Application to the TEMPEST-D CubeSat mission. J. Atmos. Oceanic Technol., 37, 197210, https://doi.org/10.1175/JTECH-D-19-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, D.-B., and C. Kummerow, 2003: Parametric rainfall retrieval algorithms for passive microwave radiometers. J. Appl. Meteor., 42, 14801496, https://doi.org/10.1175/1520-0450(2003)042<1480:PRRAFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., X. Xiang, A. Mugnai, R. E. Hood, and R. W. Spencer, 1994: Behavior of an inversion-based precipitation retrieval algorithm with high-resolution AMPR measurements including a low-frequency 10.7-GHz channel. J. Atmos. Oceanic Technol., 11, 858873, https://doi.org/10.1175/1520-0426(1994)011<0858:BOAIBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. Lafontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl, 1994: High-resolution imaging of rain systems with the Advanced Microwave Precipitation Radiometer. J. Atmos. Oceanic Technol., 11, 849857, https://doi.org/10.1175/1520-0426(1994)011<0849:HRIORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature. J. Climate, 3, 634645, https://doi.org/10.1175/1520-0442(1990)003<0634:OTRBWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UWYO, 2019: Upper air maps. Accessed 22 April 2019, https://weather.uwyo.edu/upperair/uamap.shtml.

  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1993: Comparisons of precipitation measurements by the advanced microwave precipitation radiometer and multiparameter radar. IEEE Trans. Geosci. Remote Sens., 31, 860870, https://doi.org/10.1109/36.239909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 8068, https://doi.org/10.1029/2002RS002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718, https://doi.org/10.1029/96JC01751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: Algorithm theoretical basis document (ATBD), version 2: AMSR ocean algorithm. Remote Sensing Systems Tech. Proposal 121599A-1, 67 pp., https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-amsr-ocean.pdf.

  • Wentz, F. J., and T. Meissner, 2007: Supplement 1: Algorithm theoretical basis document for AMSR-E ocean algorithms. Remote Sensing Systems Tech. Rep. 051707, 6 pp., http://images.remss.com/papers/amsr/AMSR_Ocean_Algorithm_Version_2_Supplement_1.pdf.

  • Wilheit, T. T., and A. T. C. Chang, 1980: An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci., 15, 525544, https://doi.org/10.1029/RS015i003p00525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisler, M. M., and J. P. Hollinger, 1977: Estimation of marine environmental parameters using microwave radiometric remote sensing systems. Naval Research Laboratory Memo. Rep. 3661, 27 pp.

  • Wolff, D., D. A. Marks, W. A. Petersen, and J. Pippit, 2017: GPM Ground Validation NASA S-band dual polarimetric (NPOL) Doppler radar OLYMPEX. NASA Global Hydrology Resource Center DAAC, accessed 8 June 2020, https://doi.org/10.5067/GPMGV/OLYMPEX/NPOL/DATA301.

    • Crossref
    • Export Citation
  • WPC, 2019: WPC’s Surface Analysis Archive. National Weather Service, accessed 23 April 2019, https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php.

  • Yang, W., H. Meng, R. R. Ferraro, I. Moradi, and C. Devaraj, 2013: Cross-scan asymmetry of AMSU-A window channels: Characterization, correction, and verification. IEEE Trans. Geosci. Remote Sens., 51, 15141530, https://doi.org/10.1109/TGRS.2012.2211884.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 383 0 0
Full Text Views 692 233 15
PDF Downloads 387 112 5