• Baron, P., D. Murtagh, P. Eriksson, J. Mendrok, S. Ochiai, K. Pérot, H. Sagawa, and M. Suzuki, 2018: Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder. Atmos. Meas. Tech., 11, 45454566, https://doi.org/10.5194/amt-11-4545-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beig, G., and et al. , 2003: Review of mesospheric temperature trends. Rev. Geophys., 41, 1015, https://doi.org/10.1029/2002RG000121.

  • Bertaux, J.-L., and et al. , 2010: Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on Envisat. Atmos. Chem. Phys., 10, 12 09112 148, https://doi.org/10.5194/acp-10-12091-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bittner, M., D. Offermann, H.-H. Graef, M. Donner, and K. Hamilton, 2002: An 18-year time series of oh rotational temperatures and middle atmosphere decadal variations. J. Atmos. Sol.-Terr. Phys., 64, 11471166, https://doi.org/10.1016/S1364-6826(02)00065-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanc, E., and et al. , 2018: Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project. Surv. Geophys., 39, 171225, https://doi.org/10.1007/s10712-017-9444-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. Lindzen, 1970: Atmospheric Tides. Vol. 10. Springer, 106 pp., https://doi.org/10.1007/978-94-010-3399-2.

    • Crossref
    • Export Citation
  • Charlton-Perez, A., and et al. , 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 24942505, https://doi.org/10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clancy, R., D. Rusch, and M. Callan, 1994: Temperature minima in the average thermal structure of the middle mesosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles. J. Geophys. Res., 99, 19 00119 020, https://doi.org/10.1029/94JD01681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, A., S. Smith, A. Wood, and F. Taylor, 1993: Diurnal and semidiurnal temperature variability of the middle atmosphere as observed by ISAMS. Geophys. Res. Lett., 20, 12511254, https://doi.org/10.1029/93GL01107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farman, J., B. Gardiner, and J. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finger, F., and H. M. Woolf, 1967: Diurnal variation of temperature in the upper stratosphere as indicated by a meteorological rocket experiment. J. Atmos. Sci., 24, 230239, https://doi.org/10.1175/1520-0469(1967)024<0230:DVOTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., and D. Wu, 2006: Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci., 63, 17761797, https://doi.org/10.1175/JAS3724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funatsu, B., C. Claud, P. Keckhut, W. Steinbrecht, and A. Hauchecorne, 2011: Investigations of stratospheric temperature regional variability with lidar and Advanced Microwave Sounding Unit. J. Geophys. Res., 116, D08106, https://doi.org/10.1029/2010JD014974.

    • Search Google Scholar
    • Export Citation
  • Funatsu, B., C. Claud, P. Keckhut, A. Hauchecorne, and T. Leblanc, 2016: Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J. Geophys. Res. Atmos., 121, 81728185, https://doi.org/10.1002/2015JD024305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fussen, D., and et al. , 2019: The ALTIUS atmospheric limb sounder. J. Quant. Spectrosc. Radiat. Transfer, 238, 106542, https://doi.org/10.1016/j.jqsrt.2019.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, M., and R. Nagatani, 1977: Objective analyses of height and temperature at the 5-, 2-, and 0.4-mb levels using meteorological rocketsonde and satellite radiation data. Adv. Space Res., 17, 117122.

    • Search Google Scholar
    • Export Citation
  • Gelman, M., A. Miller, K. Johnson, and R. Nagatani, 1986: Detection of long-term trends in global stratospheric temperature from NMC analysis derived from NOAA satellite data. Adv. Space Res., 6, 1726, https://doi.org/10.1016/0273-1177(86)90453-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haefele, A., and et al. , 2008: Diurnal changes in middle atmospheric H20 and O3: Observations in the Alpine region and climate models. J. Geophys. Res., 113, D17303, https://doi.org/10.1029/2008JD009892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M., 1999: GSWM-98: Results for migrating solar tides. J. Geophys. Res. Space Phys., 104, 68136827, https://doi.org/10.1029/1998JA900125.

  • Hauchecorne, A., and M.-L. Chanin, 1980: Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett., 7, 565568, https://doi.org/10.1029/GL007i008p00565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., and A. Maillard, 1990: A 2-D dynamical model of mesospheric temperature inversions in winter. Geophys. Res. Lett., 17, 21972200, https://doi.org/10.1029/GL017i012p02197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., M.-L. Chanin, and R. Wilson, 1987: Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Lett., 14, 933936, https://doi.org/10.1029/GL014i009p00933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., S. Khaykin, P. Keckhut, N. Mze, G. Angot, and C. Claud, 2019a: Recent Dynamic Studies on the Middle Atmosphere at Mid- and Low-Latitudes Using Rayleigh Lidar and Other Technologies. Springer, 757 pp.

    • Crossref
    • Export Citation
  • Hauchecorne, A., and et al. , 2019b: A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/Envisat daytime observations. Atmos. Meas. Tech., 12, 749761, https://doi.org/10.5194/amt-12-749-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibbins, R., P. Espy, Y. Orsolini, V. Limpasuvan, and R. Barnes, 2019: SuperDARN observations of semidiurnal tidal variability in the MLT and the response to sudden stratospheric warming events. J. Geophys. Res. Atmos., 124, 48624872, https://doi.org/10.1029/2018JD030157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M., and C. Leovy, 1985: Diurnal tide in the equatorial middle atmosphere as seen in LIMS temperature. J. Atmos. Sci., 42, 557561, https://doi.org/10.1175/1520-0469(1985)042<0557:DTITEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., J. L. Jirikowic, and J. P. McCormack, 1993: Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations. J. Atmos. Sci., 50, 39413958, https://doi.org/10.1175/1520-0469(1993)050<3941:QDVOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoxit, L., and R. Henry, 1973: Diurnal and annual temperature variation in the 30–60 km region as indicated by statistical analysis of rocketsonde temperature data. J. Atmos. Sci., 30, 922933, https://doi.org/10.1175/1520-0469(1973)030<0922:DAATVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, F., R. McPeters, P. Bhartia, H. Mayr, S. Frith, J. Russell III, and M. Mlynczak, 2010: Temperature diurnal variations (migrating tides) in the stratosphere and lower mesosphere based on measurements from SABER on TIMED. J. Geophys. Res., 115, D16121, https://doi.org/10.1029/2010JD014484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, M., and et al. , 2018: A highly miniaturized satellite payload based on a spatial heterodyne spectrometer for atmospheric temperature measurements in the mesosphere and lower thermosphere. Atmos. Meas. Tech., 11, 38613870, https://doi.org/10.5194/amt-11-3861-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keckhut, P., and et al. , 1996: Semidiurnal and diurnal temperature tides (30–55 km): Climatology and effect on UARS-lidar data comparison. J. Geophys. Res., 101, 10 29910 310, https://doi.org/10.1029/96JD00344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keckhut, P., and et al. , 2010: Mid-latitude ozone monitoring with the GOMOS-Envisat experiment version 5: The noise issue. Atmos. Chem. Phys., 10, 11 83911 849, https://doi.org/10.5194/acp-10-11839-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keckhut, P., B. Funatsu, C. Claud, and A. Hauchecorne, 2015: Tidal effects on stratospheric temperature series derived from successive Advanced Microwave Sounding Units. Quart. J. Roy. Meteor. Soc., 141, 477483, https://doi.org/10.1002/qj.2368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., and et al. , 2017a: Post-millennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations: Temperature change from GPS-RO and AMSU. Geophys. Res. Lett., 44, 75107518, https://doi.org/10.1002/2017GL074353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., and et al. , 2017b: Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmos. Chem. Phys., 17, 18291845, https://doi.org/10.5194/acp-17-1829-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., and et al. , 2020: The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ., 22, 26624435, https://doi.org/10.1038/s43247-020-00022-5.

    • Search Google Scholar
    • Export Citation
  • Kurylo, M., 1991: Network for the Detection of Stratospheric Change (NDSC). Proc. SPIE, 1491, 168174, https://doi.org/10.1117/12.46658.

  • Kyrölä, E., and et al. , 2010: Retrieval of atmospheric parameters from GOMOS data. Atmos. Chem. Phys., 10, 11 88111 903, https://doi.org/10.5194/acp-10-11881-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeth, J. D., and L. Callis, 1994: Temperature variations in the middle and upper stratosphere: 1979–1992. J. Geophys. Res., 99, 20 70120 712, https://doi.org/10.1029/94JD00962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblanc, T., A. Hauchecorne, M.-L. Chanin, C. Rodgers, F. Taylor, and N. Livesey, 1995: Mesospheric temperature inversions as seen by ISAMS (UARS). Geophys. Res. Lett., 22, 14851488, https://doi.org/10.1029/94GL03274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Pichon, A., and et al. , 2015: Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with numerical weather prediction models. J. Geophys. Res. Atmos., 120, 83188331, https://doi.org/10.1002/2015JD023273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J., and et al. , 2017: MinXSS-1 CubeSat on-orbit pointing and power performance: The first flight of the Blue Canyon technologies XACT 3-axis attitude determination and control system. J. Small Satell., 6, 651662.

    • Search Google Scholar
    • Export Citation
  • Maycock, A., and et al. , 2018: Revisiting the mystery of recent stratospheric temperature trends. Geophys. Res. Lett., 45, 99199933, https://doi.org/10.1029/2018GL078035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., 2002: The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: The role of tidal heating and zonal mean winds. J. Atmos. Sci., 59, 907922, https://doi.org/10.1175/1520-0469(2002)059<0907:TSVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meftah, M., and et al. , 2020: UVSQ-sat, a pathfinder CubeSat mission for observing essential climate variables. Remote Sens., 12, 92, https://doi.org/10.3390/rs12010092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, B., P. Keckhut, H. Bencherif, A. Hauchecorne, G. Megie, and S. Baldy, 2004: Investigation of the tidal variations in a 3-D dynamics-chemistry-transport model of the middle atmosphere. J. Atmos. Sol.-Terr. Phys., 66, 251265, https://doi.org/10.1016/j.jastp.2003.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noguchi, S., Y. Kuroda, H. Mukougawa, R. Mizuta, and C. Kobayashi, 2020: Impact of satellite observations on forecasting sudden stratospheric warmings. Geophys. Res. Lett., 47, e2019GL086233, https://doi.org/10.1029/2019GL086233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberheide, J., and O. Gusev, 2002: Observation of migrating and nonmigrating diurnal tides in the equatorial lower thermosphere. Geophys. Res. Lett., 29, 2167, https://doi.org/10.1029/2002GL016213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, U. J. P., P. Keckhut, Y. Courcoux, M. Marchand, S. Bekki, B. Morel, H. Bencherif, and A. Hauchecorne, 2010: Nocturnal temperature changes over tropics during CAWSES-III campaign: Comparison with numerical models and satellite data. J. Atmos. Sol.-Terr. Phys., 72, 11711179, https://doi.org/10.1016/j.jastp.2010.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remsberg, E., and et al. , 2002: An assessment of the quality of HALO temperature profiles in the mesosphere with Rayleigh backscatter lidar and inflatable falling sphere measurements. J. Geophys. Res., 107, 4447, https://doi.org/10.1029/2001JD001521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. Balanchandra, and M. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475494, https://doi.org/10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheese, P., and et al. , 2012: Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements. Atmos. Meas. Tech., 5, 29933006, https://doi.org/10.5194/amt-5-2993-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, M., B. Reid, S. Zhang, B. Solheim, G. Shepherd, V. Wickwar, and J. Herron, 2001: Retrieval and validation of mesospheric temperatures from wind imaging interferometer observations. J. Geophys. Res., 106, 24 81324 830, https://doi.org/10.1029/2000JA000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and A. O’Neill, 1994: A stratosphere–troposphere data assimilation system. Mon. Wea. Rev., 122, 686702, https://doi.org/10.1175/1520-0493(1994)122<0686:ASTDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., R. Orris, and D. Wu, 1999: Stratospheric tides and data assimilation. J. Geophys. Res., 104, 16 92916 942, https://doi.org/10.1029/1999JD900108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and et al. , 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, https://doi.org/10.1038/nature11579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, W., J. Oberheide, M. Riese, P. Preusse, and D. Offermann, 1999: Tidal signatures in temperature data from CRISTA 1 mission. J. Geophys. Res., 104, 16 39116 403, https://doi.org/10.1029/1998JD100109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, J., and et al. , 1995: Comparison of stratospheric temperature from several lidars using NMC and MLS data as transfer reference. Geophys. Res. Lett., 100, 11 10511 111, https://doi.org/10.1029/95JD00631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, R., A. Hauchecorne, P. Keckhut, S. Godin-Beekmann, S. Khaykin, and E. Mccullough, 2018: Lidar temperature series in the middle atmosphere as a reference data set D part 2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites. Atmos. Meas. Tech., 11, 67036717, https://doi.org/10.5194/amt-11-6703-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C., and N. Hindley, 2018: How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements? Atmos. Chem. Phys., 18, 13 70313 731, https://doi.org/10.5194/acp-18-13703-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Forbes, M. Hagan, J. Russell III, S. Palo, C. Mertens, and M. Mlynczak, 2006: Monthly tidal temperatures 20–120 km from TIME/SABER. J. Geophys. Res., 111, A10S08, https://doi.org/10.1029/2005JA011504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., and H. Qian, 2016: Stratospheric temperature climate data record from merged SSU and AMSU-A observations. J. Atmos. Oceanic Technol., 33, 19671984, https://doi.org/10.1175/JTECH-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 191 191 22
Full Text Views 20 20 4
PDF Downloads 23 23 6

Middle-Atmosphere Temperature Monitoring Addressed with a Constellation of CubeSats Dedicated to Climate Issues

View More View Less
  • 1 LATMOS/IPSL, UVSQ, Université Paris-Saclay, Sorbonne Université, CNRS/INSU, Guyancourt, France
  • | 2 Laboratoire de Météorologie Dynamique, Ecole Polytechnique, CNRS/INSU, Palaiseau, France
  • | 3 ONERA, Chemin de la Hunière, Palaiseau, France
© Get Permissions
Restricted access

Abstract

While meteorological numerical models extend upward to the mesopause, mesospheric observations are required for leading simulations and numerical weather forecasts and climate projections. This work reviews some of the challenges about temperature observation requirements and the limiting factors of the actual measurements associated with atmospheric tides. A new strategy is described here using a limb-scattering technique that is based on previous experiments in space. Such observations can be used with cube satellites. Technical issues are the large dynamic range (4 orders of magnitude) required for the measurements, the accuracy of the limb pointing, and the level of stray light. The technique described here will expect accuracy of 1–2 K with a vertical resolution of 1–2 km. A constellation of 100 platforms could provide temperature observations with space (100 km) and time (3 h) resolutions recommended by the World Meteorological Organization, and tidal issues could be resolved with a minimum of 3–5 platforms with specific orbit maintained to avoid drifts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Philippe Keckhut, keckhut@latmos.ipsl.fr

Abstract

While meteorological numerical models extend upward to the mesopause, mesospheric observations are required for leading simulations and numerical weather forecasts and climate projections. This work reviews some of the challenges about temperature observation requirements and the limiting factors of the actual measurements associated with atmospheric tides. A new strategy is described here using a limb-scattering technique that is based on previous experiments in space. Such observations can be used with cube satellites. Technical issues are the large dynamic range (4 orders of magnitude) required for the measurements, the accuracy of the limb pointing, and the level of stray light. The technique described here will expect accuracy of 1–2 K with a vertical resolution of 1–2 km. A constellation of 100 platforms could provide temperature observations with space (100 km) and time (3 h) resolutions recommended by the World Meteorological Organization, and tidal issues could be resolved with a minimum of 3–5 platforms with specific orbit maintained to avoid drifts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Philippe Keckhut, keckhut@latmos.ipsl.fr
Save