Evaluation of KDP Estimation Algorithm Performance in Rain Using a Known-Truth Framework

Karly J. Reimel Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Karly J. Reimel in
Current site
Google Scholar
PubMed
Close
and
Matthew Kumjian Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate estimation of specific differential phase (KDP) is necessary for rain rate estimation, attenuation correction, and hydrometeor classification algorithms. There are numerous published methods to process polarimetric radar observations of propagation differential phase shift (ΦDP) and estimate KDP, but the corresponding KDP estimate uncertainty is unquantified. This study provides guidance on how commonly used KDP estimation algorithms perform in various environments. We create numerous synthetic (“true”) KDP profiles, integrate over them to obtain “smoothed” ΦDP, and then add noise typical of S-band operational weather radar measurements. Each algorithm is applied to our noisy ΦDP profiles and compared to the true KDP profile such that the errors and uncertainty are quantified. The synthetic KDP profiles are Gaussian in shape, which allows systematic variations in their magnitude and width to determine how each algorithm performs in smooth, slowly changing KDP profiles, as well as steep profiles. Results demonstrate that algorithm performance is dependent on the ΦDP field received. These results are further supported by an error analysis of each algorithm for two more complicated synthetic KDP profiles. Some KDP algorithms allow users to change various tuning parameters; a subset of these tuning parameters is tested to provide guidance on how changing these parameters impacts algorithm performance. We then provide evidence that our known-truth framework provides insight into algorithm performance in observed data through two case studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-20-0060.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karly Jackson Reimel, kjr50@psu.edu

Abstract

Accurate estimation of specific differential phase (KDP) is necessary for rain rate estimation, attenuation correction, and hydrometeor classification algorithms. There are numerous published methods to process polarimetric radar observations of propagation differential phase shift (ΦDP) and estimate KDP, but the corresponding KDP estimate uncertainty is unquantified. This study provides guidance on how commonly used KDP estimation algorithms perform in various environments. We create numerous synthetic (“true”) KDP profiles, integrate over them to obtain “smoothed” ΦDP, and then add noise typical of S-band operational weather radar measurements. Each algorithm is applied to our noisy ΦDP profiles and compared to the true KDP profile such that the errors and uncertainty are quantified. The synthetic KDP profiles are Gaussian in shape, which allows systematic variations in their magnitude and width to determine how each algorithm performs in smooth, slowly changing KDP profiles, as well as steep profiles. Results demonstrate that algorithm performance is dependent on the ΦDP field received. These results are further supported by an error analysis of each algorithm for two more complicated synthetic KDP profiles. Some KDP algorithms allow users to change various tuning parameters; a subset of these tuning parameters is tested to provide guidance on how changing these parameters impacts algorithm performance. We then provide evidence that our known-truth framework provides insight into algorithm performance in observed data through two case studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-20-0060.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karly Jackson Reimel, kjr50@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 299.04 KB)
Save
  • Al-Sakka, H., A.-A. Boumahmoud, B. Fradon, S. J. Frasier, and P. Tabary, 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol., 52, 23282344, https://doi.org/10.1175/JAMC-D-12-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., and V. Chandrasekar, 2015: A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Oceanic Technol., 32, 2247, https://doi.org/10.1175/JTECH-D-14-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Besic, N., J. F. i Ventura, J. Grazioli, M. Gabella, U. Germann, and A. Berne, 2016: Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach. Atmos. Meas. Tech., 9, 44254445, https://doi.org/10.5194/amt-9-4425-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., M. Thurai, K. Nakagawa, G. Huang, T. Kobayashi, A. Adachi, H. Hanado, and S. Sekizawa, 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteor. Soc. Japan, 84, 705724, https://doi.org/10.2151/jmsj.84.705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, https://doi.org/10.1175/JHM-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629, https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and V. Chandrasekar, 2015: The quantitative precipitation estimation system for Dallas–Fort Worth (DFW) urban remote sensing network. J. Hydrol., 531, 259271, https://doi.org/10.1016/j.jhydrol.2015.05.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., V. Chandrasekar, and R. Bechini, 2017: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrometeor., 18, 917937, https://doi.org/10.1175/JHM-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, https://doi.org/10.1175/2010JTECHA1488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., R. McGraw, and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, https://doi.org/10.1175/JTECH-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, https://doi.org/10.1109/36.739161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., D. Tuia, and A. Berne, 2015: Hydrometeor classification from polarimetric radar measurements: A clustering approach. Atmos. Meas. Tech., 8, 149170, https://doi.org/10.5194/amt-8-149-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, p.e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., G. Zhang, K. Zhao, and S. E. Giangrande, 2017: A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens., 55, 96111, https://doi.org/10.1109/TGRS.2016.2596295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, https://doi.org/10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., J. W. Wilson, T. M. Weckwerth, S. M. Ellis, M. Dixon, and E. Loew, 2018: S-Pol’s polarimetric data reveal detailed storm features (and insect behavior). Bull. Amer. Meteor. Soc., 99, 20452060, https://doi.org/10.1175/BAMS-D-17-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T., 2003: Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52, 2331.

  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm-and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer, 15–63.

    • Crossref
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019a: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., C. P. Martinkus, O. P. Prat, S. Collis, M. van Lier-Walqui, and H. C. Morrison, 2019b: A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteor. Climatol., 58, 113130, https://doi.org/10.1175/JAMC-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, https://doi.org/10.1175/JCLI4082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801, https://doi.org/10.1109/TGRS.2004.843077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., V. N. Bringi, V. Chandrasekar, E. A. Mueller, and A. Mudukutore, 1994: Analysis of the copolar correlation coefficient between horizontal and vertical polarizations. J. Atmos. Oceanic Technol., 11, 950963, https://doi.org/10.1175/1520-0426(1994)011<0950:AOTCCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maesaka, T., K. Iwanami, and M. Maki, 2012: Non-negative KDP estimation by monotone increasing ΦDP assumption below melting layer. Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, ERAD, http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/QPE_233_ext_abs.pdf.

  • Marzano, F. S., D. Scaranari, and G. Vulpiani, 2007: Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote Sens., 45, 37843799, https://doi.org/10.1109/TGRS.2007.903399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, https://doi.org/10.1175/JTECH1887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric radar measurements of tropical rain at a 5-cm wavelength. J. Appl. Meteor., 38, 750765, https://doi.org/10.1175/1520-0450(1999)038<0750:PRMOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. R. Kumjian, C. P. Martinkus, O. P. Prat, and M. van Lier-Walqui, 2019: A general n-moment normalization method for deriving raindrop size distribution scaling relationships. J. Appl. Meteor. Climatol., 58, 247267, https://doi.org/10.1175/JAMC-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, T., and H. W. J. Russchenberg, 2011: Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geosci. Remote Sens. Lett., 8, 988992, https://doi.org/10.1109/LGRS.2011.2145354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinoso-Rondinel, R., C. Unal, and H. Russchenberg, 2018: Adaptive and high-resolution estimation of specific differential phase for polarimetric X-band weather radars. J. Atmos. Oceanic Technol., 35, 555573, https://doi.org/10.1175/JTECH-D-17-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribaud, J.-F., L. A. T. Machado, and T. Biscaro, 2019: X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems. Atmos. Meas. Tech., 12, 811837, https://doi.org/10.5194/amt-12-811-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, https://doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090, https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1985: ZDR measurement considerations for a fast scan capability radar. Radio Sci., 20, 907922, https://doi.org/10.1029/RS020i004p00907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598, https://doi.org/10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., J. Grazioli, and A. Berne, 2014: Improved estimation of the specific differential phase shift using a compilation of Kalman filter ensembles. IEEE Trans. Geosci. Remote Sens., 52, 51375149, https://doi.org/10.1109/TGRS.2013.2287017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, https://doi.org/10.1175/JTECH-D-13-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, M. Thurai, and V. Chandrasekar, 2018: Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteor. Climatol., 57, 755775, https://doi.org/10.1175/JAMC-D-17-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery, 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Sci., 38, 8049, https://doi.org/10.1029/2002RS002676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., L. Baldini, and N. Roberto, 2015: Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. Atmos. Meas. Tech., 8, 46814698, https://doi.org/10.5194/amt-8-4681-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zhang, A. V. Ryzhkov, and L. Tang, 2013: C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Oceanic Technol., 30, 13541370, https://doi.org/10.1175/JTECH-D-12-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Protat, P. T. May, X. Wang, and W. Moran, 2015: A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. J. Atmos. Oceanic Technol., 32, 13201340, https://doi.org/10.1175/JTECH-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, G., N. I. Fox, and P. S. Market, 2019: A Gaussian mixture method for specific differential phase retrieval at X-band frequency. Atmos. Meas. Tech., 12, 56135637, https://doi.org/10.5194/amt-12-5613-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Tang, S. Cocks, P. Zhang, A. Ryzhkov, K. Howard, C. Langston, and B. Kaney, 2020: A dual-polarization radar synthetic QPE for operations. J. Hydrometeor., 21, 25072521, https://doi.org/10.1175/JHM-D-19-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, https://doi.org/10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., A. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, https://doi.org/10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 814 0 0
Full Text Views 1596 535 36
PDF Downloads 1735 561 39