Quantitative Evaluation of Polarimetric Estimates from Scanning Weather Radars Using a Vertically Pointing Micro Rain Radar

Ricardo Reinoso-Rondinel Department of Geosciences and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Ricardo Reinoso-Rondinel in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7868-245X
and
Marc Schleiss Department of Geosciences and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Marc Schleiss in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Conventionally, Micro Rain Radars (MRRs) have been used as a tool to calibrate reflectivity from weather radars, estimate the relation between rainfall rate and reflectivity, and study microphysical processes in precipitation. However, limited attention has been given to the reliability of the retrieved drop size distributions (DSDs) from MRRs. This study sheds more light on this aspect by examining the sensitivity of retrieved DSDs to the assumptions made to map Doppler spectra into size distributions, and investigates the capability of an MRR to assess polarimetric observations from operational weather radars. For that, an MRR was installed near the Cabauw observatory in the Netherlands, between the International Research Center for Telecommunications and Radar (IRCTR) Drizzle Radar (IDRA) X-band radar and the Herwijnen operational C-band radar. The measurements of the MRR from November 2018 to February 2019 were used to retrieve DSDs and simulate horizontal reflectivity Ze, differential reflectivity ZDR, and specific differential phase KDP in rain. Attention is given to the impact of aliased spectra and right-hand-side truncation on the simulation of polarimetric variables. From a quantitative assessment, the correlations of Ze and ZDR between the MRR and Herwijnen radar were 0.93 and 0.70, respectively, while those between the MRR and IDRA were 0.91 and 0.69. However, Ze and ZDR from the Herwijnen radar showed slight biases of 1.07 and 0.25 dB. For IDRA, the corresponding biases were 2.67 and −0.93 dB. Our results show that MRR measurements are advantageous to inspect the calibration of scanning radars and validate polarimetric estimates in rain, provided that the DSDs are correctly retrieved and controlled for quality assurance.

Current affiliation: Department of Meteorology, Institute for Geosciences, University of Bonn, Bonn, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Reinoso-Rondinel, ricardoreinoso232@gmail.com

Abstract

Conventionally, Micro Rain Radars (MRRs) have been used as a tool to calibrate reflectivity from weather radars, estimate the relation between rainfall rate and reflectivity, and study microphysical processes in precipitation. However, limited attention has been given to the reliability of the retrieved drop size distributions (DSDs) from MRRs. This study sheds more light on this aspect by examining the sensitivity of retrieved DSDs to the assumptions made to map Doppler spectra into size distributions, and investigates the capability of an MRR to assess polarimetric observations from operational weather radars. For that, an MRR was installed near the Cabauw observatory in the Netherlands, between the International Research Center for Telecommunications and Radar (IRCTR) Drizzle Radar (IDRA) X-band radar and the Herwijnen operational C-band radar. The measurements of the MRR from November 2018 to February 2019 were used to retrieve DSDs and simulate horizontal reflectivity Ze, differential reflectivity ZDR, and specific differential phase KDP in rain. Attention is given to the impact of aliased spectra and right-hand-side truncation on the simulation of polarimetric variables. From a quantitative assessment, the correlations of Ze and ZDR between the MRR and Herwijnen radar were 0.93 and 0.70, respectively, while those between the MRR and IDRA were 0.91 and 0.69. However, Ze and ZDR from the Herwijnen radar showed slight biases of 1.07 and 0.25 dB. For IDRA, the corresponding biases were 2.67 and −0.93 dB. Our results show that MRR measurements are advantageous to inspect the calibration of scanning radars and validate polarimetric estimates in rain, provided that the DSDs are correctly retrieved and controlled for quality assurance.

Current affiliation: Department of Meteorology, Institute for Geosciences, University of Bonn, Bonn, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Reinoso-Rondinel, ricardoreinoso232@gmail.com
Save
  • Adirosi, E., L. Baldini, N. Roberto, P. Gatlin, and A. Tokay, 2016: Improvement of vertical profiles of raindrop size distribution from Micro Rain Radar using 2D video disdrometer measurements. Atmos. Res., 169, 404415, https://doi.org/10.1016/j.atmosres.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adirosi, E., L. Baldini, and A. Tokay, 2020: Rainfall and DSD parameters comparison between Micro Rain Radar, two-dimensional video and Parsivel disdrometers, and S-band dual-polarization radar. J. Atmos. Oceanic Technol., 37, 621640, https://doi.org/10.1175/JTECH-D-19-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Rain. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Rain.

  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beekhuis, H., and I. Holleman, 2008: From pulse to product: Highlights of the digital-IF upgrade of the Dutch national radar network. Fifth European Conf. on Radar Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, 120, https://cdn.knmi.nl/system/data_center_publications/files/000/068/061/original/erad2008drup_0120.pdf?1495621011.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishman, and D. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Liu, J. An, U. Gorsdorf, and F. Berger, 2015: A field experiment on the small-scale variability of rainfall based on a network of Micro Rain Radars and rain gauges. J. Appl. Meteor. Climatol., 54, 243255, https://doi.org/10.1175/JAMC-D-13-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Figueras i Ventura, J., 2009: Design of a high resolution X-band Doppler polarimetric radar. Ph.D. thesis, Delft University of Technology, 182 pp.

  • Frech, M., M. Hagen, and T. Mammen, 2017: Monitoring the absolute calibration of a polarimetric weather radar. J. Atmos. Oceanic Technol., 34, 599615, https://doi.org/10.1175/JTECH-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166, https://doi.org/10.1175/JTECH1766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., and L. Baldini, 2015: Influence of beam broadening on the accuracy of radar polarimetric rainfall estimation. J. Hydrometeor., 16, 13561371, https://doi.org/10.1175/JHM-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. P. D. Chatelet, 2006: Data quality of the Meteo-France C-band polarimetric radar. J. Atmos. Oceanic Technol., 23, 13401356, https://doi.org/10.1175/JTECH1912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, A., and J. Shepherd, 1979: Electromagnetic scattering by dielectric spheroids in the forward and backward directions. J. Phys., 12A, 159166, https://doi.org/10.1088/0305-4470/12/1/029.

    • Search Google Scholar
    • Export Citation
  • Kowalewsky, S., and G. Peters, 2010: Analysis of Z–R relations based on LDR signatures within the melting layer. J. Atmos. Oceanic Technol., 27, 15551561, https://doi.org/10.1175/2010JTECHA1363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., M. Konwar, K. Chakravarty, and S. Deshpande, 2017: Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res., 186, 7282, https://doi.org/10.1016/j.atmosres.2016.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., and Coauthors, 2010: Precipitation measurement at CESAR, the Netherlands. J. Hydrometeor., 11, 13221329, https://doi.org/10.1175/2010JHM1245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengfeld, K., M. Clemens, C. Merker, H. Münster, and F. Ament, 2016: A simple method for attenuation correction in local X-band radar measurements using C-band radar data. J. Atmos. Oceanic Technol., 33, 23152329, https://doi.org/10.1175/JTECH-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengfeld, K., M. Berenguer, and D. S. Torres, 2018: Intercomparison of attenuation correction algorithms for single-polarized X-band radars. Atmos. Res., 201, 116132, https://doi.org/10.1016/j.atmosres.2017.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazari, N., H. O. Sharif, H. Xie, A. E. Tekeli, J. Zeitler, and E. Habib, 2017: Rainfall observations and assessment using vertically pointing radar and X-band radar. J. Hydroinform., 19, 538557, https://doi.org/10.2166/hydro.2017.151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • METEK, 2015: MRR physical basics, version 5.2.0.1. Meteorologische Messtechnik GmbH Tech. Rep., 20 pp., https://mpimet.mpg.de/fileadmin/atmosphaere/barbados/Instrumentation/MRR-physical-basics_20090707.pdf

  • Otto, T., and H. W. J. Russchenberg, 2011: Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geosci. Remote Sens. Lett., 8, 988992, https://doi.org/10.1109/LGRS.2011.2145354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, T., H. W. J. Russchenberg, R. R. Reinoso-Rondinel, C. M. H. Unal, J. Yin, and C. Gatidis, 2010: IDRA weather radar measurements—All data. Processed data with standard range, 4TU.ResearchData, accessed 28 February 2019, https://doi.org/10.4121/uuid:5f3bcaa2-a456-4a66-a67b-1eec928cae6d.

    • Crossref
    • Export Citation
  • Park, S.-G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, https://doi.org/10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Munster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by Micro Rain Radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and M. Clemens, 2010: Rain attenuation of radar echoes considering finite-range resolution and using drop size distribution. J. Atmos. Oceanic Technol., 27, 829842, https://doi.org/10.1175/2009JTECHA1342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinoso-Rondinel, R., C. Unal, and H. Russchenberg, 2018: Adaptive and high-resolution estimation of specific differential phase for polarimetric X-band weather radars. J. Atmos. Oceanic Technol., 35, 555573, https://doi.org/10.1175/JTECH-D-17-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, C., and M. Hagen, 1997: Drop-size distributions of raindrops by polarization radar and simultaneous measurements with disdrometer, windprofiler and PMS probes. Quart. J. Roy. Meteor. Soc., 123, 22772296, https://doi.org/10.1002/qj.49712354407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 2004: Radar for Meteorologists. Rinehart Publishing, 464 pp.

  • Ryzhkov, A., and D. Zrnić, 2005: Radar polarimetry at S, C, and X bands: Comparative analysis and operational implications. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.3, https://ams.confex.com/ams/32Rad11Meso/webprogram/Paper95684.html.

  • Scarchilli, G., E. Gorgucci, V. Chandrasekar, and A. Dobaie, 1996: Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34, 2226, https://doi.org/10.1109/36.481887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994, https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. L. Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., J. V. Baelen, and Y. Pointing, 2011: Aliasing in Micro Rain Radar data due to strong vertical winds. Geophys. Res. Lett., 38, L02804, https://doi.org/10.1029/2010GL046018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C., 2009: Spectral polarimetric radar clutter suppression to enhance atmospheric echoes. J. Atmos. Oceanic Technol., 26, 17811797, https://doi.org/10.1175/2009JTECHA1170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Baelen, J., Y. Pointin, W. Wobrock, A. Flossmann, G. Peters, F. Tridon, and C. Planche, 2009: Precipitation and microphysical studies with a low cost high resolution X-band radar: An innovative project prospective. Adv. Geosci., 20, 2532, https://doi.org/10.5194/adgeo-20-25-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M., W. A. Petersen, P. N. Gatlin, C. S. Pabla, D. A. Marks, and D. B. Wolff, 2018: The System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) precipitation observation fusion framework. J. Atmos. Oceanic Technol., 35, 13531374, https://doi.org/10.1175/JTECH-D-17-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., C. Unal, and H. Russchenberg, 2019: Object-orientated filter design in spectral domain for polarimetric weather radar. IEEE Trans. Geosci. Remote Sens., 57, 27252740, https://doi.org/10.1109/TGRS.2018.2876632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 446 0 0
Full Text Views 592 176 15
PDF Downloads 544 127 10