Spatiotemporal Lightning Activity Detected by WWLLN over the Tibetan Plateau and Its Comparison with LIS Lightning

Ruiyang Ma State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ruiyang Ma in
Current site
Google Scholar
PubMed
Close
,
Dong Zheng State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Dong Zheng in
Current site
Google Scholar
PubMed
Close
,
Yijun Zhang Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Yijun Zhang in
Current site
Google Scholar
PubMed
Close
,
Wen Yao State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Wen Yao in
Current site
Google Scholar
PubMed
Close
,
Wenjuan Zhang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Wenjuan Zhang in
Current site
Google Scholar
PubMed
Close
, and
Deqing Cuomu Naqu Meteorological Service, Tibet, China

Search for other papers by Deqing Cuomu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Herein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP that is not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of 10-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The blackbody temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm-day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data are more analogous to the LIS data, whereas the cloud-to-ground (CG) lightning data from a local CG lightning location system are closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.

These authors contributed equally to this work; they are the co–first authors.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Zheng, zhengdong@cma.gov.cn

Abstract

Herein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP that is not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of 10-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The blackbody temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm-day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data are more analogous to the LIS data, whereas the cloud-to-ground (CG) lightning data from a local CG lightning location system are closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.

These authors contributed equally to this work; they are the co–first authors.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Zheng, zhengdong@cma.gov.cn
Save
  • Ávila, E. E., R. E. Bürgesser, N. E. Castellano, A. B. Collier, R. H. Compagnucci, and A. R. W. Hughes, 2010: Correlations between deep convection and lightning activity on a global scale. J. Atmos. Sol.-Terr. Phys., 72, 11141121, https://doi.org/10.1016/j.jastp.2010.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, K. L. Miller, and A. M. Gadian, 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies. Atmos. Res., 51, 221236, https://doi.org/10.1016/S0169-8095(99)00009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beirle, S., W. Koshak, R. Blakeslee, and T. Wagner, 2014: Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci., 14, 27152726, https://doi.org/10.5194/nhess-14-2715-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, J., D. Li, Z. Bai, Q. Li, D. Lyu, and X. Zhou, 2020: Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. Natl. Sci. Rev., 7, 516533, https://doi.org/10.1093/nsr/nwaa005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17, 441458, https://doi.org/10.1175/1520-0426(2000)017<0441:TOTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124029, https://doi.org/10.1175/JAS-D-12-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and R. J. Thomas, 2015: Lightning channel length and flash energy determined from moments of the flash area distribution. J. Geophys. Res. Atmos., 120, 89258940, https://doi.org/10.1002/2015JD023766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., 2017: Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Quart. J. Roy. Meteor. Soc., 143, 28092817, https://doi.org/10.1002/qj.3129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. B. Buechler, and J. B. Richard, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 2000: Lightning Imaging Sensor (LIS) for the International Space Station. AIP Conf. Proc., 504, 423428, https://doi.org/10.1063/1.1302515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, https://doi.org/10.1029/98JD00153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowden, R. L., J. B. Brundell, and C. J. Rodger, 2002: VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Sol.-Terr. Phys., 64, 817830, https://doi.org/10.1016/S1364-6826(02)00085-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowden, R. L., and Coauthors, 2008: World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas Propag. Mag., 50, 4060, https://doi.org/10.1109/MAP.2008.4674710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, https://doi.org/10.1007/s00382-004-0488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, P., D. Zheng, Y. Zhang, S. Gu, W. Zhang, W. Yao, B. Yan, and Y. Xu, 2018: A performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J. Atmos. Oceanic Technol., 35, 927939, https://doi.org/10.1175/JTECH-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 56645669, https://doi.org/10.1073/pnas.0601584103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., and Coauthors, 2020: Land surface processes and summer cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. Natl. Sci. Rev., 7, 500515, https://doi.org/10.1093/nsr/nwz226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., X. Ju, M. Bao, G. Lu, Z. Liu, Y. Li, and Y. Mu, 2017: Relationship between lightning activity and tropospheric nitrogen dioxide and the estimation of lightning-produced nitrogen oxides over China. Adv. Atmos. Sci., 34, 235245, https://doi.org/10.1007/s00376-016-6087-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., Y. Mu, Y. Li, M. Wang, Z. Huan, F. Zeng, and C. Lian, 2019: Effects of nitrogen oxides produced from lightning on the formation of the ozone valley over the Tibetan Plateau (in Chinese). Chin. J. Atmos. Sci., 43, 266276.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, J. B. Brundell, and C. J. Rodger, 2012: Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci., 47, RS6005, https://doi.org/10.1029/2012RS005049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., X. Xiang, and M. Fan, 1996: The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer (in Chinese). Yingyong Qixiang Xuebao, 7, 473478.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, Y. Song, L. Hu, S. Gao, and R. Fu, 2008: Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation. J. Appl. Meteor. Climatol., 47, 26792695, https://doi.org/10.1175/2008JAMC1695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, M., S. Tao, B. Zhu, and W. Lyu, 2005: Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Sci. China, 48D, 219229, https://doi.org/10.1360/03yd0204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattos, E. V., and L. A. T. Machado, 2011: Cloud-to-ground lightning and mesoscale convective systems. Atmos. Res., 99, 377390, https://doi.org/10.1016/j.atmosres.2010.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., and C. Liu, 2013: Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J. Geophys. Res. Atmos., 118, 11 72711 740, https://doi.org/10.1002/jgrd.50715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., 2000: Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature, 406, 290293, https://doi.org/10.1038/35018543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, P., D. Zheng, Y. Zhang, and L. Gao, 2016: Climatological characteristics and spatio-temporal correspondence of lightning and precipitation over the Tibetan Plateau (in Chinese). Appl. Meteor. Sci., 27, 488497.

    • Search Google Scholar
    • Export Citation
  • Qie, X., R. Toumi, and T. Yuan, 2003a: Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J. Geophys. Res., 108, 4551, https://doi.org/10.1029/2002JD003304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., R. Toumi, and Y. Zhou, 2003b: Characteristics of lightning activity and its response to the maximum unstable energy of convection in the central Tibetan Plateau (in Chinese). Chin. Sci. Bull., 48, 8790.

    • Search Google Scholar
    • Export Citation
  • Qie, X., T. Zhang, C. Chen, G. Zhang, T. Zhang, and W. Wei, 2005: The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett., 32, L05814, https://doi.org/10.1029/2004GL022162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., X. Wu, T. Yuan, J. Bian, and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, https://doi.org/10.1175/JCLI-D-14-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, and R. L. Dowden, 2005: Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys., 23, 277290, https://doi.org/10.5194/angeo-23-277-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, https://doi.org/10.5194/angeo-24-3197-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, https://doi.org/10.1002/grl.50428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Y. Zhang, H. Liu, W. Yao, and Q. Meng, 2016: Characteristics of cloud-to-ground lightning strikes in the stratiform regions of mesoscale convective systems. Atmos. Res., 178–179, 207216, https://doi.org/10.1016/j.atmosres.2016.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., X. Deng, Y. Zhang, Y. Li, G. Zhang, L. Xu, and D. Zheng, 2019: Numerical simulation of the formation of a large lower positive charge center in a Tibetan Plateau thunderstorm. J. Geophys. Res. Atmos., 124, 95619593, https://doi.org/10.1029/2018JD029676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, R., D. Zhang, and B. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J. Appl. Meteor. Climatol., 54, 24432460, https://doi.org/10.1175/JAMC-D-15-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D., and G. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D., S. Luo, and B. Zhu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surroundings (in Chinese). Acta Meteor. Sin., 28, 108121.

    • Search Google Scholar
    • Export Citation
  • You, J., D. Zheng, Y. Zhang, W. Yao, and Q. Meng, 2019: Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmos. Res., 223, 98113, https://doi.org/10.1016/j.atmosres.2019.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., and X. Qie, 2004: Spatial and temporal distributions of lightning activities in China from satellite observation (in Chinese). Plateau Meteor., 23, 488494.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., and X. Qie, 2005: Seasonal variation of lightning activities and related meteorological factors over the central Qinghai-Xizang Plateau (in Chinese). Acta Meteor. Sin., 63, 123127.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Li, and D. Zheng, 2002: A discussion on the boundary and area of the Tibetan Plateau in China (in Chinese). Geogr. Res., 21, 18.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Dong, Y. Zhao, G. Zhang, H. Zhang, C. Chen, and T. Zhang, 2004: Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau. Sci. China, 47D, 108114, https://doi.org/10.1007/BF02880986.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., D. Zheng, Y. Zhang, and G. Lu, 2017: Spatial–temporal characteristics of lightning flash size in a supercell storm. Atmos. Res., 197, 201210, https://doi.org/10.1016/j.atmosres.2017.06.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., Q. Meng, Y. Zhang, J. Dai, and M. Zhong, 2010: Correlation between total lightning activity and precipitation particle characteristics observed from 34 thunderstorms. Acta Meteor. Sin., 24, 776788.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., Y. Zhang, Q. Meng, L. Chen, and J. Dan, 2016a: Climatological comparison of small- and large-current cloud-to-ground lightning flashes over southern China. J. Climate, 29, 28312848, https://doi.org/10.1175/JCLI-D-15-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., Y. Zhang, Q. Meng, L. Chen, and J. Dan, 2016b: Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy. Adv. Atmos. Sci., 33, 365376, https://doi.org/10.1007/s00376-015-5124-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., Y. Zhang, and Q. Meng, 2018: Properties of negative initial leaders and lightning flash size in a cluster of supercells. J. Geophys. Res. Atmos., 123, 12 85712 876, https://doi.org/10.1029/2018JD028824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., D. Wang, Y. Zhang, T. Wu, and N. Takagi, 2019: Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos., 124, 71797206, https://doi.org/10.1029/2018JD030060.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., and Coauthors, 2020: Lightning and deep convective activities over the Tibetan Plateau. Natl. Sci. Rev., 7, 487488, https://doi.org/10.1093/nsr/nwz182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J. Cheng, M. Chen, Y. Wang, and Q. Ding, 2007: Statistical features of infrared cloud temperature from May to August in Beijing and surroundings and its meteorological significance (in Chinese). Chin. Sci. Bull., 52, 17001706, https://doi.org/10.1007/s11434-007-0438-z.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J. Cheng, and P. Zhu, 2008: Distribution of mesoscale convective system and its diurnal variation in summer in China and its surroundings (in Chinese). Chin. Sci. Bull., 53, 471481.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 0 0
Full Text Views 801 227 9
PDF Downloads 740 278 9