Changes in TOA SW Fluxes over Marine Clouds When Estimated via Semiphysical Angular Distribution Models

F. Tornow Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany
Earth Institute, Columbia University, New York, New York
NASA GISS, New York, New York

Search for other papers by F. Tornow in
Current site
Google Scholar
PubMed
Close
,
C. Domenech GMV, Madrid, Spain

Search for other papers by C. Domenech in
Current site
Google Scholar
PubMed
Close
,
J. N. S. Cole Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by J. N. S. Cole in
Current site
Google Scholar
PubMed
Close
,
N. Madenach Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany

Search for other papers by N. Madenach in
Current site
Google Scholar
PubMed
Close
, and
J. Fischer Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany

Search for other papers by J. Fischer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Top-of-atmosphere (TOA) shortwave (SW) angular distribution models (ADMs) approximate—per angular direction of an imagined upward hemisphere—the intensity of sunlight scattered back from a specific Earth–atmosphere scene. ADMs are, thus, critical when converting satellite-borne broadband radiometry into estimated radiative fluxes. This paper applies a set of newly developed ADMs with a more refined scene definition and demonstrates tenable changes in estimated fluxes compared to currently operational ADMs. Newly developed ADMs use a semiphysical framework to consider cloud-top effective radius ( R ¯ e ) and above-cloud water vapor (ACWV), in addition to accounting for surface wind speed and clouds’ phase, fraction, and optical depth. In effect, instantaneous TOA SW fluxes for marine liquid-phase clouds had the largest flux differences (of up to 25 W m−2) for lower solar zenith angles and cloud optical depth greater than 10 due to extremes in R ¯ e or ACWV. In regions where clouds had persistently extreme levels of R ¯ e (here mostly for R ¯ e < 7 μ m and R ¯ e > 15 μ m ) or ACWV, instantaneous fluxes estimated from Aqua, Terra, Meteosat-8, and Meteosat-9 satellites using the two ADMs differed systematically, resulting in significant deviations in daily mean fluxes (up to ±10 W m−2) and monthly mean fluxes (up to ±5 W m−2). Flux estimates using newly developed, semiphysical ADMs may contribute to a better understanding of solar fluxes over low-level clouds. It remains to be seen whether aerosol indirect effects are impacted by these updates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, florian.tornow@nasa.gov

Abstract

Top-of-atmosphere (TOA) shortwave (SW) angular distribution models (ADMs) approximate—per angular direction of an imagined upward hemisphere—the intensity of sunlight scattered back from a specific Earth–atmosphere scene. ADMs are, thus, critical when converting satellite-borne broadband radiometry into estimated radiative fluxes. This paper applies a set of newly developed ADMs with a more refined scene definition and demonstrates tenable changes in estimated fluxes compared to currently operational ADMs. Newly developed ADMs use a semiphysical framework to consider cloud-top effective radius ( R ¯ e ) and above-cloud water vapor (ACWV), in addition to accounting for surface wind speed and clouds’ phase, fraction, and optical depth. In effect, instantaneous TOA SW fluxes for marine liquid-phase clouds had the largest flux differences (of up to 25 W m−2) for lower solar zenith angles and cloud optical depth greater than 10 due to extremes in R ¯ e or ACWV. In regions where clouds had persistently extreme levels of R ¯ e (here mostly for R ¯ e < 7 μ m and R ¯ e > 15 μ m ) or ACWV, instantaneous fluxes estimated from Aqua, Terra, Meteosat-8, and Meteosat-9 satellites using the two ADMs differed systematically, resulting in significant deviations in daily mean fluxes (up to ±10 W m−2) and monthly mean fluxes (up to ±5 W m−2). Flux estimates using newly developed, semiphysical ADMs may contribute to a better understanding of solar fluxes over low-level clouds. It remains to be seen whether aerosol indirect effects are impacted by these updates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, florian.tornow@nasa.gov
Save
  • Ahlgrimm, M., R. M. Forbes, R. J. Hogan, and I. Sandu, 2018: Understanding global model systematic shortwave radiation errors in subtropical marine boundary layer cloud regimes. J. Adv. Model. Earth Syst., 10, 20422060, https://doi.org/10.1029/2018MS001346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Wiellicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1990: Earth radiation budget measurements: Pre-ERBE, ERBE, and CERES. Proc. SPIE, 1299, 5260, https://doi.org/10.1117/12.21364.

  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, https://doi.org/10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139 , https://doi.org/10.1016/j.jqsrt.2014.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benas, N., S. Finkensieper, M. Stengel, G.-J. van Zadelhoff, T. Hanschmann, R. Hollmann, and J. F. Meirink, 2017: The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data, 9, 415434, https://doi.org/10.5194/essd-9-415-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., H. Rohde, R. J. Charlson, A. M. L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, https://doi.org/10.1111/j.1600-0870.2006.00181.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Fischer, 2000: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared. J. Quant. Spectrosc. Radiat. Transfer, 66, 539553, https://doi.org/10.1016/S0022-4073(99)00184-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Rausch, 2017: Global and regional estimates of warm cloud droplet number concentration based on 13 years of Aqua-MODIS observations. Atmos. Chem. Phys., 17, 98159836, https://doi.org/10.5194/acp-17-9815-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., H. Le Treut, J.-P. Duvel, and R. S. Kandel, 1992: Satellite validation of GCM-simulated annual cycle of the Earth radiation budget and cloud forcing. J. Geophys. Res., 97, 18 06118 081, https://doi.org/10.1029/92JD01631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821, https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., A. D. Del Genio, and H. Chepfer, 2019: The Cumulus and Stratocumulus CloudSat-CALIPSO dataset (CASCCAD). Earth Syst. Sci. Data, 11, 17451764, https://doi.org/10.5194/essd-11-1745-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44, 838850, https://doi.org/10.1364/JOSA.44.000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, S., and N. Clerbaux, 2017: Measurement of the Earth radiation budget at the top of the atmosphere—A review. Remote Sens., 9, 1143, https://doi.org/10.3390/rs9111143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, S., L. Gonzalez, N. Clerbaux, A. Ipe, C. Bertrand, and B. De Paepe, 2008: The Geostationary Earth Radiation Budget Edition 1 data processing algorithms. Adv. Space Res., 41, 19061913, https://doi.org/10.1016/j.asr.2007.07.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrich, H., R. Preusker, R. Lindstrot, and J. Fischer, 2013: Quantification of uncertainties of water vapour column retrievals using future instruments. Atmos. Meas. Tech., 6, 359370, https://doi.org/10.5194/amt-6-359-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., C. Haney, R. Bhatt, B. Scarino, and A. Gopalan, 2018: Geostationary visible imager calibration for the CERES SYN1deg Edition 4 product. Remote Sen., 10, 288, https://doi.org/10.3390/rs10020288.

    • Search Google Scholar
    • Export Citation
  • Finkensieper, S., and Coauthors, 2016: CLAAS-2: CM SAF cloud property dataset using SEVIRI—Edition 2. Satellite Application Facility on Climate Monitoring, accessed 11 March 2019, https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002.

    • Crossref
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., X. Huang, P. Yang, and G. W. Kattawar, 2013: Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media. Appl. Opt., 52, 58695879, https://doi.org/10.1364/AO.52.005869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gristey, J. J., J. C. Chiu, R. J. Gurney, C. J. Morcrette, P. G. Hill, J. E. Russell, and H. E. Brindley, 2018: Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model. Atmos. Chem. Phys., 18, 51295145, https://doi.org/10.5194/acp-18-5129-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., and Coauthors, 2019: Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19, 53315347, https://doi.org/10.5194/acp-19-5331-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Fielding, H. W. Barker, N. Villefranque, and S. A. K. Schäfer, 2019: Entrapment: An important mechanism to explain the shortwave 3D radiative effect of clouds. J. Atmos. Sci., 76, 4866, https://doi.org/10.1175/JAS-D-18-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollstein, A., and J. Fischer, 2012: Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique. J. Quant. Spectrosc. Radiat. Transfer, 113, 536548, https://doi.org/10.1016/j.jqsrt.2012.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ipe, A., C. Bertrand, N. Clerbaux, S. Dewitte, and L. Gonzalez, 2004: Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 data. Atmos. Res., 72, 1737, https://doi.org/10.1016/j.atmosres.2004.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, https://doi.org/10.1002/jgrd.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., R. Preusker, and J. Fischer, 2009: The retrieval of land surface pressure from MERIS measurements in the oxygen A band. J. Atmos. Oceanic Technol., 26, 13671377, https://doi.org/10.1175/2009JTECHA1212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, and B. A. Wielicki, 2002: Defining top-of-the-atmosphere flux reference level for Earth radiation budget studies. J. Climate, 15, 33013309, https://doi.org/10.1175/1520-0442(2002)015<3301:DTOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the tropical rainfall measuring mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, https://doi.org/10.1175/JTECH1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., 2018: Global estimates of changes in shortwave low-cloud albedo and fluxes due to variations in cloud droplet number concentration derived from CERES-MODIS satellite sensors. Geophys. Res. Lett., 45, 92889296, https://doi.org/10.1029/2018GL078880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., S. Kato, and P. Minnis, 2014: Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-Train satellite constellation. J. Geophys. Res. Atmos., 119, 11 28811 302, https://doi.org/10.1002/2014JD022182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peers, F., and Coauthors, 2019: Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI—Part 1: Method description and sensitivity. Atmos. Chem. Phys., 19, 95959611, https://doi.org/10.5194/acp-19-9595-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 40754095, https://doi.org/10.1029/JD092iD04p04075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., M. J. Suarez, R. Todling, J. Bacmeister, L. Takacs, H.-C. Liu, W. Gu, and M. Sienkiewicz, 2008: The GOES-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, 118 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.

  • Rothman, L., and Coauthors, 2009: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 110, 533572, https://doi.org/10.1016/j.jqsrt.2009.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., G. L. Smith, and T. Wong, 2014: Diurnal variations of albedo retrieved from Earth radiation budget experiment measurements. J. Appl. Meteor. Climatol., 53, 27472760, https://doi.org/10.1175/JAMC-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, and Y. Shinozuka, 2016: Extending “deep blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. J. Geophys. Res. Atmos., 121, 48304854, https://doi.org/10.1002/2015JD024729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., R. N. Green, E. Raschke, L. M. Avis, J. T. Suttles, B. A. Wielicki, and R. Davies, 1986: Inversion methods for satellite studies of the Earth’s radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys., 24, 407421, https://doi.org/10.1029/RG024i002p00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., K. Priestley, N. Loeb, B. Wielicki, T. Charlock, P. Minnis, D. Doelling, and D. Rutan, 2011: Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res., 48, 254263, https://doi.org/10.1016/j.asr.2011.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, https://doi.org/10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for Earth-atmosphere system. Vol. I: Shortwave radiation. NASA Langley Research Center Tech. Rep. NASA RP-1184, 114 pp.

  • Toll, V., M. Christensen, S. Gassó, and N. Bellouin, 2017: Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys. Res. Lett., 44, 12 49212 500, https://doi.org/10.1002/2017GL075280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tornow, F., R. Preusker, C. Domenech, C. K. Carbajal Henken, S. Testorp, and J. Fischer, 2018: Top-of-atmosphere shortwave anisotropy over liquid clouds: Sensitivity to clouds’ microphysical structure and cloud-topped moisture. Atmosphere, 9, 256, https://doi.org/10.3390/atmos9070256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tornow, F., C. Domenech, H. W. Barker, R. Preusker, and J. Fischer, 2020: Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean. Atmos. Meas. Tech., 13, 39093922, https://doi.org/10.5194/amt-13-3909-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, and E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

All Time Past Year Past 30 Days
Abstract Views 199 0 0
Full Text Views 391 119 5
PDF Downloads 302 70 8