• Ahlgrimm, M., R. M. Forbes, R. J. Hogan, and I. Sandu, 2018: Understanding global model systematic shortwave radiation errors in subtropical marine boundary layer cloud regimes. J. Adv. Model. Earth Syst., 10, 20422060, https://doi.org/10.1029/2018MS001346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Wiellicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1990: Earth radiation budget measurements: Pre-ERBE, ERBE, and CERES. Proc. SPIE, 1299, 5260, https://doi.org/10.1117/12.21364.

  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, https://doi.org/10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139 , https://doi.org/10.1016/j.jqsrt.2014.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benas, N., S. Finkensieper, M. Stengel, G.-J. van Zadelhoff, T. Hanschmann, R. Hollmann, and J. F. Meirink, 2017: The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data, 9, 415434, https://doi.org/10.5194/essd-9-415-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., H. Rohde, R. J. Charlson, A. M. L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, https://doi.org/10.1111/j.1600-0870.2006.00181.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Fischer, 2000: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared. J. Quant. Spectrosc. Radiat. Transfer, 66, 539553, https://doi.org/10.1016/S0022-4073(99)00184-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Rausch, 2017: Global and regional estimates of warm cloud droplet number concentration based on 13 years of Aqua-MODIS observations. Atmos. Chem. Phys., 17, 98159836, https://doi.org/10.5194/acp-17-9815-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., H. Le Treut, J.-P. Duvel, and R. S. Kandel, 1992: Satellite validation of GCM-simulated annual cycle of the Earth radiation budget and cloud forcing. J. Geophys. Res., 97, 18 06118 081, https://doi.org/10.1029/92JD01631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821, https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., A. D. Del Genio, and H. Chepfer, 2019: The Cumulus and Stratocumulus CloudSat-CALIPSO dataset (CASCCAD). Earth Syst. Sci. Data, 11, 17451764, https://doi.org/10.5194/essd-11-1745-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44, 838850, https://doi.org/10.1364/JOSA.44.000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, S., and N. Clerbaux, 2017: Measurement of the Earth radiation budget at the top of the atmosphere—A review. Remote Sens., 9, 1143, https://doi.org/10.3390/rs9111143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, S., L. Gonzalez, N. Clerbaux, A. Ipe, C. Bertrand, and B. De Paepe, 2008: The Geostationary Earth Radiation Budget Edition 1 data processing algorithms. Adv. Space Res., 41, 19061913, https://doi.org/10.1016/j.asr.2007.07.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrich, H., R. Preusker, R. Lindstrot, and J. Fischer, 2013: Quantification of uncertainties of water vapour column retrievals using future instruments. Atmos. Meas. Tech., 6, 359370, https://doi.org/10.5194/amt-6-359-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and et al. , 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., C. Haney, R. Bhatt, B. Scarino, and A. Gopalan, 2018: Geostationary visible imager calibration for the CERES SYN1deg Edition 4 product. Remote Sen., 10, 288, https://doi.org/10.3390/rs10020288.

    • Search Google Scholar
    • Export Citation
  • Finkensieper, S., and et al. , 2016: CLAAS-2: CM SAF cloud property dataset using SEVIRI—Edition 2. Satellite Application Facility on Climate Monitoring, accessed 11 March 2019, https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002.

    • Crossref
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., X. Huang, P. Yang, and G. W. Kattawar, 2013: Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media. Appl. Opt., 52, 58695879, https://doi.org/10.1364/AO.52.005869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gristey, J. J., J. C. Chiu, R. J. Gurney, C. J. Morcrette, P. G. Hill, J. E. Russell, and H. E. Brindley, 2018: Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model. Atmos. Chem. Phys., 18, 51295145, https://doi.org/10.5194/acp-18-5129-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., and et al. , 2019: Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19, 53315347, https://doi.org/10.5194/acp-19-5331-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Fielding, H. W. Barker, N. Villefranque, and S. A. K. Schäfer, 2019: Entrapment: An important mechanism to explain the shortwave 3D radiative effect of clouds. J. Atmos. Sci., 76, 4866, https://doi.org/10.1175/JAS-D-18-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollstein, A., and J. Fischer, 2012: Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique. J. Quant. Spectrosc. Radiat. Transfer, 113, 536548, https://doi.org/10.1016/j.jqsrt.2012.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and et al. , 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ipe, A., C. Bertrand, N. Clerbaux, S. Dewitte, and L. Gonzalez, 2004: Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 data. Atmos. Res., 72, 1737, https://doi.org/10.1016/j.atmosres.2004.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, https://doi.org/10.1002/jgrd.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., R. Preusker, and J. Fischer, 2009: The retrieval of land surface pressure from MERIS measurements in the oxygen A band. J. Atmos. Oceanic Technol., 26, 13671377, https://doi.org/10.1175/2009JTECHA1212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, and B. A. Wielicki, 2002: Defining top-of-the-atmosphere flux reference level for Earth radiation budget studies. J. Climate, 15, 33013309, https://doi.org/10.1175/1520-0442(2002)015<3301:DTOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the tropical rainfall measuring mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, https://doi.org/10.1175/JTECH1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and et al. , 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., 2018: Global estimates of changes in shortwave low-cloud albedo and fluxes due to variations in cloud droplet number concentration derived from CERES-MODIS satellite sensors. Geophys. Res. Lett., 45, 92889296, https://doi.org/10.1029/2018GL078880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., S. Kato, and P. Minnis, 2014: Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-Train satellite constellation. J. Geophys. Res. Atmos., 119, 11 28811 302, https://doi.org/10.1002/2014JD022182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peers, F., and et al. , 2019: Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI—Part 1: Method description and sensitivity. Atmos. Chem. Phys., 19, 95959611, https://doi.org/10.5194/acp-19-9595-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and et al. , 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 40754095, https://doi.org/10.1029/JD092iD04p04075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., M. J. Suarez, R. Todling, J. Bacmeister, L. Takacs, H.-C. Liu, W. Gu, and M. Sienkiewicz, 2008: The GOES-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, 118 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.

  • Rothman, L., and et al. , 2009: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 110, 533572, https://doi.org/10.1016/j.jqsrt.2009.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., G. L. Smith, and T. Wong, 2014: Diurnal variations of albedo retrieved from Earth radiation budget experiment measurements. J. Appl. Meteor. Climatol., 53, 27472760, https://doi.org/10.1175/JAMC-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, and Y. Shinozuka, 2016: Extending “deep blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. J. Geophys. Res. Atmos., 121, 48304854, https://doi.org/10.1002/2015JD024729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., R. N. Green, E. Raschke, L. M. Avis, J. T. Suttles, B. A. Wielicki, and R. Davies, 1986: Inversion methods for satellite studies of the Earth’s radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys., 24, 407421, https://doi.org/10.1029/RG024i002p00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., K. Priestley, N. Loeb, B. Wielicki, T. Charlock, P. Minnis, D. Doelling, and D. Rutan, 2011: Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res., 48, 254263, https://doi.org/10.1016/j.asr.2011.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, https://doi.org/10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and et al. , 1988: Angular radiation models for Earth-atmosphere system. Vol. I: Shortwave radiation. NASA Langley Research Center Tech. Rep. NASA RP-1184, 114 pp.

  • Toll, V., M. Christensen, S. Gassó, and N. Bellouin, 2017: Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys. Res. Lett., 44, 12 49212 500, https://doi.org/10.1002/2017GL075280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tornow, F., R. Preusker, C. Domenech, C. K. Carbajal Henken, S. Testorp, and J. Fischer, 2018: Top-of-atmosphere shortwave anisotropy over liquid clouds: Sensitivity to clouds’ microphysical structure and cloud-topped moisture. Atmosphere, 9, 256, https://doi.org/10.3390/atmos9070256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tornow, F., C. Domenech, H. W. Barker, R. Preusker, and J. Fischer, 2020: Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean. Atmos. Meas. Tech., 13, 39093922, https://doi.org/10.5194/amt-13-3909-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, and E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

All Time Past Year Past 30 Days
Abstract Views 59 59 32
Full Text Views 14 14 1
PDF Downloads 17 17 2

Changes in TOA SW Fluxes over Marine Clouds When Estimated via Semiphysical Angular Distribution Models

View More View Less
  • 1 Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany
  • | 2 Earth Institute, Columbia University, New York, New York
  • | 3 NASA GISS, New York, New York
  • | 4 GMV, Madrid, Spain
  • | 5 Environment and Climate Change Canada, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

Top-of-atmosphere (TOA) shortwave (SW) angular distribution models (ADMs) approximate—per angular direction of an imagined upward hemisphere—the intensity of sunlight scattered back from a specific Earth–atmosphere scene. ADMs are, thus, critical when converting satellite-borne broadband radiometry into estimated radiative fluxes. This paper applies a set of newly developed ADMs with a more refined scene definition and demonstrates tenable changes in estimated fluxes compared to currently operational ADMs. Newly developed ADMs use a semiphysical framework to consider cloud-top effective radius (R¯e) and above-cloud water vapor (ACWV), in addition to accounting for surface wind speed and clouds’ phase, fraction, and optical depth. In effect, instantaneous TOA SW fluxes for marine liquid-phase clouds had the largest flux differences (of up to 25 W m−2) for lower solar zenith angles and cloud optical depth greater than 10 due to extremes in R¯e or ACWV. In regions where clouds had persistently extreme levels of R¯e (here mostly for R¯e<7μm and R¯e>15μm) or ACWV, instantaneous fluxes estimated from Aqua, Terra, Meteosat-8, and Meteosat-9 satellites using the two ADMs differed systematically, resulting in significant deviations in daily mean fluxes (up to ±10 W m−2) and monthly mean fluxes (up to ±5 W m−2). Flux estimates using newly developed, semiphysical ADMs may contribute to a better understanding of solar fluxes over low-level clouds. It remains to be seen whether aerosol indirect effects are impacted by these updates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, florian.tornow@nasa.gov

Abstract

Top-of-atmosphere (TOA) shortwave (SW) angular distribution models (ADMs) approximate—per angular direction of an imagined upward hemisphere—the intensity of sunlight scattered back from a specific Earth–atmosphere scene. ADMs are, thus, critical when converting satellite-borne broadband radiometry into estimated radiative fluxes. This paper applies a set of newly developed ADMs with a more refined scene definition and demonstrates tenable changes in estimated fluxes compared to currently operational ADMs. Newly developed ADMs use a semiphysical framework to consider cloud-top effective radius (R¯e) and above-cloud water vapor (ACWV), in addition to accounting for surface wind speed and clouds’ phase, fraction, and optical depth. In effect, instantaneous TOA SW fluxes for marine liquid-phase clouds had the largest flux differences (of up to 25 W m−2) for lower solar zenith angles and cloud optical depth greater than 10 due to extremes in R¯e or ACWV. In regions where clouds had persistently extreme levels of R¯e (here mostly for R¯e<7μm and R¯e>15μm) or ACWV, instantaneous fluxes estimated from Aqua, Terra, Meteosat-8, and Meteosat-9 satellites using the two ADMs differed systematically, resulting in significant deviations in daily mean fluxes (up to ±10 W m−2) and monthly mean fluxes (up to ±5 W m−2). Flux estimates using newly developed, semiphysical ADMs may contribute to a better understanding of solar fluxes over low-level clouds. It remains to be seen whether aerosol indirect effects are impacted by these updates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, florian.tornow@nasa.gov
Save