Modular, Flexible, Low-Cost Microstructure Measurements: The Epsilometer

Arnaud Le Boyer Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Arnaud Le Boyer in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Nicole Couto Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Nicole Couto in
Current site
Google Scholar
PubMed
Close
,
Michael Goldin Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Michael Goldin in
Current site
Google Scholar
PubMed
Close
,
Sean Lastuka Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Sean Lastuka in
Current site
Google Scholar
PubMed
Close
,
Sara Goheen Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Sara Goheen in
Current site
Google Scholar
PubMed
Close
,
San Nguyen Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by San Nguyen in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Lucas Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Andrew J. Lucas in
Current site
Google Scholar
PubMed
Close
, and
Tyler D. Hennon University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Tyler D. Hennon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Epsilometer (“epsi”) is a small (7 cm diameter × 30 cm long), low-power (0.15 W), and extremely modular microstructure package measuring thermal and kinetic energy dissipation rates, χ and ε. Both the shear probes and FP07 temperature sensors are fabricated in house following techniques developed by Michael Gregg at the Applied Physics Laboratory/University of Washington (APL/UW). Sampling eight channels (two shear, two temperature, three-axis accelerometer, and a spare for future sensors) at 24 bit precision and 325 Hz, the system can be deployed in standalone mode (battery power and recording to microSD cards) for deployment on autonomous vehicles, wave powered profilers, or it can be used with dropping body termed the “epsi-fish” for profiling from boats, autonomous surface craft or ships with electric fishing reels or other simple winches. The epsi-fish can also be used in real-time mode with the Scripps “fast CTD” winch for fully streaming, altimeter-equipped, line-powered, rapid-repeating, near-bottom shipboard profiles to 2200 m. Because this winch has a 25 ft (~7.6 m) boom deployable outboard from the ship, contamination by ship wake is reduced one to two orders of magnitude in the upper 10–15 m. The noise floor of ε profiles from the epsi-fish is ~10−10 W kg−1. This paper describes the fabrication, electronics, and characteristics of the system, and documents its performance compared to its predecessor, the APL/UW Modular Microstructure Profiler (MMP).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arnaud Le Boyer, aleboyer@ucsd.edu

Abstract

The Epsilometer (“epsi”) is a small (7 cm diameter × 30 cm long), low-power (0.15 W), and extremely modular microstructure package measuring thermal and kinetic energy dissipation rates, χ and ε. Both the shear probes and FP07 temperature sensors are fabricated in house following techniques developed by Michael Gregg at the Applied Physics Laboratory/University of Washington (APL/UW). Sampling eight channels (two shear, two temperature, three-axis accelerometer, and a spare for future sensors) at 24 bit precision and 325 Hz, the system can be deployed in standalone mode (battery power and recording to microSD cards) for deployment on autonomous vehicles, wave powered profilers, or it can be used with dropping body termed the “epsi-fish” for profiling from boats, autonomous surface craft or ships with electric fishing reels or other simple winches. The epsi-fish can also be used in real-time mode with the Scripps “fast CTD” winch for fully streaming, altimeter-equipped, line-powered, rapid-repeating, near-bottom shipboard profiles to 2200 m. Because this winch has a 25 ft (~7.6 m) boom deployable outboard from the ship, contamination by ship wake is reduced one to two orders of magnitude in the upper 10–15 m. The noise floor of ε profiles from the epsi-fish is ~10−10 W kg−1. This paper describes the fabrication, electronics, and characteristics of the system, and documents its performance compared to its predecessor, the APL/UW Modular Microstructure Profiler (MMP).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arnaud Le Boyer, aleboyer@ucsd.edu
Save
  • Alford, M. H., and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16 94716 968, https://doi.org/10.1029/2000JC000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. Ilyas, 1999: Diapycnal mixing in the Banda Sea: Results of the first microstructure measurements in the Indonesian Throughflow. Geophys. Res. Lett., 26, 27412744, https://doi.org/10.1029/1999GL002337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., D. W. Gerdt, and C. M. Adkins, 2006: An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index. J. Atmos. Oceanic Technol., 23, 121137, https://doi.org/10.1175/JTECH1830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, R. Pinkel, and J. M. Klymak, 2017: Space–time scales of shear in the North Pacific. J. Phys. Oceanogr., 47, 24552478, https://doi.org/10.1175/JPO-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. J. Fluid Mech., 5, 113139, https://doi.org/10.1017/S002211205900009X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubell, M. J., H. Yamazaki, H. Li, and Y. Kokubu, 2009: An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems. J. Plankton Res., 31, 14411452, https://doi.org/10.1093/plankt/fbp092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., A. K. Peterson, and J. E. Ullgren, 2014: Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel overflow. J. Atmos. Oceanic Technol., 31, 11281150, https://doi.org/10.1175/JTECH-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J. M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, E. C., J. A. Mackinnon, M. H. Alford, and J. B. Mickett, 2018: Microstructure observations of turbulent heat fluxes in a warm-core Canada Basin eddy. J. Phys. Oceanogr., 48, 23972418, https://doi.org/10.1175/JPO-D-18-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, L., E. R. Levine, and R. G. Lueck, 2006: On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol., 23, 977990, https://doi.org/10.1175/JTECH1889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1998: Estimation and geography of diapycnal mixing in the stratified ocean. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, 305–338.

    • Crossref
    • Export Citation
  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanic Technol., 16, 14831490, https://doi.org/10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. Meagher, 1980: The dynamic response of glass rod thermistors. J. Geophys. Res., 85, 27792786, https://doi.org/10.1029/JC085iC05p02779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. Meagher, A. Pederson, and E. Aagaard, 1978: Low noise temperature microstructure measurements with thermistors. Deep-Sea Res., 25, 843856, https://doi.org/10.1016/0146-6291(78)90028-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., M. H. Alford, H. Kontoyiannis, and V. Zervakis, 2012: Mixing over the steep side of the Cycladic Plateau in the Aegean Sea. J. Mar. Syst., 89, 3047, https://doi.org/10.1016/j.jmarsys.2011.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, E. R., and R. G. Lueck, 1999: Turbulence measurement from an autonomous underwater vehicle. J. Atmos. Oceanic Technol., 16, 15331544, https://doi.org/10.1175/1520-0426(1999)016<1533:TMFAAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., R. Pinkel, and M. Alford, 2017: Ocean wave energy for long endurance, broad bandwidth ocean monitoring. Oceanography, 30 (2), 126127, https://doi.org/10.5670/oceanog.2017.232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, https://doi.org/10.1023/A:1015837020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. L. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mickett, J. B., M. C. Gregg, and H. E. Seim, 2004: Direct measurements of diapycnal mixing in a fjord reach—Puget Sound’s Main Basin. Estuarine Coastal Shelf Sci., 59, 539558, https://doi.org/10.1016/j.ecss.2003.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, https://doi.org/10.1038/nature12363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., R. Inoue, A. Tandon, and H. Yamazaki, 2015: Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. J. Geophys. Res. Oceans, 120, 84028421, https://doi.org/10.1002/2015JC011288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., D. R. Caldwell, M. J. Zellman, and J. N. Moum, 1999: A thermocouple probe for high-speed temperature measurement in the ocean. J. Atmos. Oceanic Technol., 16, 14741482, https://doi.org/10.1175/1520-0426(1999)016<1474:ATPFHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and Coauthors, 2017: Autonomous CTD profiling from the robotic oceanographic surface sampler. Oceanography, 30 (2), 110112, https://doi.org/10.5670/oceanog.2017.229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninnis, R., 1984: The effects of spatial averaging on air-foil probe measurements of oceanic velocity microstructure. Ph.D. thesis, University of British Columbia, 109 pp.

  • Oakey, N. S., 1977: An instrument to measure oceanic turbulence and microstructure. Bedford Institute of Oceanography Rep. Series BI-R-77-3, 52 pp.

  • Panchev, S., and D. Kesich, 1969: Energy spectrum of isotropic turbulence at large wavenumbers. Dokl. Bulg. Akad. Nauk., 22, 627630.

  • Rainville, L., and R. Pinkel, 2001: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. Oceanic Technol., 18, 10481051, https://doi.org/10.1175/1520-0426(2001)018<1048:WAAWPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T., J. Dunlap, J. Carlson, D. Webb, and J. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE, 152–156, https://doi.org/10.1109/CCM.2005.1506361.

    • Crossref
    • Export Citation
  • Send, U., G. Fowler, G. Siddall, B. Beanlands, M. Pittman, C. Waldmann, J. Karstensen, and R. Lampitt, 2013: SeaCycler: A moored open-ocean profiling system for the upper ocean in extended self-contained deployments. J. Atmos. Oceanic Technol., 30, 15551565, https://doi.org/10.1175/JTECH-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and S. Merrifield, 2017: Measurements of near-surface turbulence and mixing from autonomous ocean gliders. Oceanography, 30 (2), 116125, https://doi.org/10.5670/oceanog.2017.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, https://doi.org/10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, https://doi.org/10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiggins, S., J. Manley, E. Brager, and B. Woolhiser, 2010: Monitoring marine mammal acoustics using wave glider. OCEANS 2010 MTS, Seattle, WA, IEEE, https://doi.org/10.1109/OCEANS.2010.5664537.

    • Crossref
    • Export Citation
  • Wolk, F., R. Lueck, and L. S. Laurent, 2009: Turbulence measurements from a glider. OCEANS 2009, Biloxi, MS, IEEE, https://doi.org/10.23919/OCEANS.2009.5422413.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 267 0 0
Full Text Views 994 338 21
PDF Downloads 740 228 16