• Andersson, T., and K.-I. Ivarsson, 1991: A model for probability nowcasts of accumulated precipitation using radar. J. Appl. Meteor., 30, 135141, https://doi.org/10.1175/1520-0450(1991)030<0135:AMFPNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, https://doi.org/10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1953: Duration of convective radar cloud units. Bull. Amer. Meteor. Soc., 34, 227228, https://doi.org/10.1175/1520-0477-34.5.221.

    • Search Google Scholar
    • Export Citation
  • Boak, T. I. S., III, A. J. Jagodnik Jr., R. B. Marshall, D. Riceman, and M. J. Young, 1977: Tracking and significance estimator. Raytheon R&D Equipment Information Rep., 118 pp.

  • Bowler, N. E., C. E. Pierce, and A. Seed, 2004: Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol., 288, 7491, https://doi.org/10.1016/j.jhydrol.2003.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, P. J., M. J. Schroeder, and M. R. Poellot, 1978: Automatic identification and tracking of radar echoes in HIPLEX. Preprints, 18th Conf. on Radar Meteorology, Atlanta, GA, Amer. Meteor. Soc., 139–143.

  • Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113120, https://doi.org/10.1175/1520-0493(1977)105<0113:FISTOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caton, P., 1963: Wind measurement by Doppler radar. Meteor. Mag., 92, 3222.

  • Cheung, P., and H. Yeung, 2012: Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong. Third WMO Int. Symp. on Nowcasting and Very Short-Range Forecasting, Rio de Janeiro, Brazil, WMO, 6–10.

  • Crane, R. K., 1979: Automatic cell detection and tracking. IEEE Trans. Geosci. Electron., 17, 250262, https://doi.org/10.1109/TGE.1979.294654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterbrook, C. C., 1975: Estimating horizontal wind fields by two-dimensional curve fitting of single Doppler radar measurements. Preprints, 16th Conf. on Radar Meteorology, Houston, TX, Amer. Meteor. Soc., 214–219.

  • Forsyth, D. E., 1979: Real time forecasting of echo–centroid motion. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 79 pp.

  • Han, L., S. Fu, L. Zhao, Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, https://doi.org/10.1175/2008JTECHA1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handwerker, J., 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534, https://doi.org/10.1016/S0169-8095(01)00100-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, L., T. Chen, and Q. Kong, 2016: A review of studies on prefrontal torrential rain in South China. Yingyong Qixiang Xuebao, 27, 559569.

    • Search Google Scholar
    • Export Citation
  • Hilst, G. R., and J. A. Russo, 1960: An objective extrapolation technique for semi-conservative fields with an application to radar patterns. Travelers Research Center Tech. Memo. 3, 34 pp.

  • Horn, B. K., and B. G. Schunck, 1981: Determining optical flow. Artif. Intell., 17, 185203, https://doi.org/10.1016/0004-3702(81)90024-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., M. Dixon, and S. Ellis, 2009: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, https://doi.org/10.1175/2009JTECHA1160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T., and Coauthors, 2003: The Sydney 2000 World Weather Research Programme Forecast Demonstration Project: Overview and current status. Bull. Amer. Meteor. Soc., 84, 10411054, https://doi.org/10.1175/BAMS-84-8-1041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C. J., P. S. Ray, and C. E. Hane, 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 28402865, https://doi.org/10.1175/1520-0469(1987)044<2840:TOSLOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koscielny, A. J., R. Doviak, and R. Rabin, 1982: Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observations. J. Appl. Meteor., 21, 197210, https://doi.org/10.1175/1520-0450(1982)021<0197:SCITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, X., M. Wei, W. Ge, and R. Dang, 2001: A new method retrieving wind field using single Doppler radar. J. Meteor. Sci., 21, 417424.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 218–223.

  • Li, L., W. Schmid, and J. Joss, 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 12861300, https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., 2007: An integrating velocity–azimuth process single-Doppler radar wind retrieval method. J. Atmos. Oceanic Technol., 24, 658665, https://doi.org/10.1175/JTECH2047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Y. Xie, J. Yin, Y. Luo, D. Yao, and F. Li, 2019: An IVAP-based dealiasing method for radar velocity data quality control. J. Atmos. Oceanic Technol., 36, 20692085, https://doi.org/10.1175/JTECH-D-18-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ligda, M. G., 1953: Horizontal motion of small precipitation areas as observed by radar. MIT Dept. of Meteorology Tech. Rep. 21, 60 pp.

  • Liu, H., M. Wei, and L. Guan, 2015: Application of Doppler radar radial velocity data to nowcasting. Daqi Kexue Xuebao, 38, 483491.

  • Lucas, B. D., and T. Kanade, 1981: An iterative image registration technique with an application to stereo vision. Proc. Seventh Int. Joint Conf. on Artificial Intelligence, Vancouver, BC, Canada, University of British Columbia, 121–130.

  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L., and R. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219235, https://doi.org/10.1016/0034-4257(74)90044-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, T. M., and A. Fleisher, 1960: The linear predictability of weather radar signals. MIT Dept. of Meteorology Research Rep. 34, 46 pp.

  • Orr, B. W., and R. A. Kropfli, 1999: A method for estimating particle fall velocities from vertically pointing Doppler radar. J. Atmos. Oceanic Technol., 16, 2937, https://doi.org/10.1175/1520-0426(1999)016<0029:AMFEPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P., and T. Anderson, 1987: A real-time system for automatic single-Doppler wind field analysis. Proc. Symp. on Mesoscale Analysis and Forecasting, Vancouver, BC, Canada, ESA, 61–66.

  • Pierce, C., and Coauthors, 2004: The nowcasting of precipitation during Sydney 2000: An appraisal of the QPF algorithms. Wea. Forecasting, 19, 721, https://doi.org/10.1175/1520-0434(2004)019<0007:TNOPDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625, https://doi.org/10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R., and E. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287289, https://doi.org/10.1038/273287a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1987: Objective method for analysis and tracking of convective cells as seen by radar. J. Atmos. Oceanic Technol., 4, 422434, https://doi.org/10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seed, A., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388, https://doi.org/10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and J. J. Mewes, 1999: New formulations of dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 16, 782792, https://doi.org/10.1175/1520-0426(1999)016<0782:NFODDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20, 17581775, https://doi.org/10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106, https://doi.org/10.1175/2009JTECHA1256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F.-Q. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., 1992: A test of wind field retrieval from single Doppler observation for a cold front case. J. Trop. Meteor., 11, 142149.

  • Thorpe, A., M. Miller, and M. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M.-J., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, B., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248, https://doi.org/10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldteufel, P., and H. Corbin, 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor., 18, 532542, https://doi.org/10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Wong, L. Liu, and H. Wang, 2013: Application of multi-scale tracking radar echoes scheme in quantitative precipitation nowcasting. Adv. Atmos. Sci., 30, 448460, https://doi.org/10.1007/s00376-012-2026-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Crossref
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilk, K. E., and K. C. Gray, 1970: Processing and analysis techniques used with the NSSL weather radar system. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 369–374.

  • Wilson, J. W., 1966: Movement and predictability of radar echoes. National Severe Storms Laboratory Tech. Memo ERTM-NSSL-28, 30 pp.

  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792100, https://doi.org/10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q.-N., and Coauthors, 2008: Doppler radar data assimilation in KMA’s operational forecasting. Bull. Amer. Meteor. Soc., 89, 3944, https://doi.org/10.1175/BAMS-89-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., 1976: Computer applications and techniques for storm tracking and warning. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 514–521.

All Time Past Year Past 30 Days
Abstract Views 30 30 30
Full Text Views 0 0 0
PDF Downloads 1 1 1

A Study of Extrapolation Nowcasting Based on IVAP-Retrieved Wind

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Science, Beijing, China
  • 2 Meteorological Center, Central South Air Traffic Management Bureau, CAAC, Guangzhou, China
© Get Permissions
Restricted access

Abstract

In this study, we propose a new way to obtain motion vectors using the integrating velocity–azimuth process (IVAP) method for extrapolation nowcasting. Traditional tracking methods rely on tracking radar echoes of a few time slices. In contrast, the IVAP method does not depend on the past variation of radar echoes; it only needs the radar echo and radial velocity observations at the latest time. To demonstrate it is practical to use IVAP-retrieved winds to extrapolate radar echoes, we carried out nowcasting experiments using the IVAP method, and compared these results with the results using a traditional method, namely, the tracking radar echoes by correlation (TREC) method. Comparison based on a series of large-scale mature rainfall cases showed that the IVAP method has similar accuracy to that of the TREC method. In addition, the IVAP method provides the vertical wind profile that can be used to anticipate storm type and motion deviations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xudong Liang, liangxd@cma.gov.cn

Abstract

In this study, we propose a new way to obtain motion vectors using the integrating velocity–azimuth process (IVAP) method for extrapolation nowcasting. Traditional tracking methods rely on tracking radar echoes of a few time slices. In contrast, the IVAP method does not depend on the past variation of radar echoes; it only needs the radar echo and radial velocity observations at the latest time. To demonstrate it is practical to use IVAP-retrieved winds to extrapolate radar echoes, we carried out nowcasting experiments using the IVAP method, and compared these results with the results using a traditional method, namely, the tracking radar echoes by correlation (TREC) method. Comparison based on a series of large-scale mature rainfall cases showed that the IVAP method has similar accuracy to that of the TREC method. In addition, the IVAP method provides the vertical wind profile that can be used to anticipate storm type and motion deviations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xudong Liang, liangxd@cma.gov.cn
Save