• Allabakash, S., S. Lim, V. Chandrasekar, K. H. Min, J. Choi, and B. Jang, 2019: X-band dual-polarization radar observations of snow growth processes of a severe winter storm: Case of 12 December 2013 in South Korea. J. Atmos. Oceanic Technol., 36, 12171235, https://doi.org/10.1175/JTECH-D-18-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allard, E., 1876: Mémorie sur l’Intensiteet la Porteé des Phares. Dunod, 70 pp.

  • Aydin, K., and C. Tang, 1995: Estimation of ice water content with 94-GHz millimeter wave radar observables. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 550–552.

  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Black, 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisyarin, V. P., I. P. Bisyarina, V. K. Rubash, and A. K. Sokolov, 1971: Attenuation of 10.6 and 0.63 mm laser radiation in atmospheric precipitation. Radio Eng. Electron. Phys., 16, 15941597.

    • Search Google Scholar
    • Export Citation
  • Black, A. W., and T. L. Mote, 2015: Characteristics of winter-precipitation-related transportation fatalities in the United States. Wea. Climate Soc., 7, 133145, https://doi.org/10.1175/WCAS-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., and G. A. Isaac, 2009: Parameterization of visibility in snow: Application in numerical weather prediction models. J. Geophys. Res., 114, D19202, https://doi.org/10.1029/2008JD011130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., G. A. Isaac, R. W. Crawford, and J. Reid, 2012: Parameterization of runway visual range as a function of visibility: Implications for numerical weather prediction models. J. Atmos. Oceanic Technol., 29, 177191, https://doi.org/10.1175/JTECH-D-11-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., 2017: Polarimetric measurements of ice pellets and aggregated snow. Ph.D. dissertation, University of Oklahoma, 120 pp., https://hdl.handle.net/11244/52406.

  • Bukovčić, P., D. Zrnić, and G. Zhang, 2017: Winter precipitation liquid–ice phase transitions revealed with polarimetric radar and 2DVD observations in central Oklahoma. J. Appl. Meteor. Climatol., 56, 13451363, https://doi.org/10.1175/JAMC-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, and D. Zrnić, 2020: Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteor. Climatol., 59, 9911009, https://doi.org/10.1175/JAMC-D-19-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capozzi, V., M. Montopoli, A. Bracci, E. Adirosi, L. Baldini, G. Vulpiani, and G. Budillon, 2020: Retrieval of snow precipitation rate from polarimetric X-band radar measurements in southern Italy Apennine mountains. Atmos. Res., 236, 104796, https://doi.org/10.1016/j.atmosres.2019.104796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., and A. V. Ryzhkov, 2019: Estimation of melting-layer cooling rate from dual-polarization radar: Spectral bin model simulations. J. Appl. Meteor. Climatol., 58, 14851508, https://doi.org/10.1175/JAMC-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, https://doi.org/10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., G. Wakahamam, T. Endoh, S. Irikawa, H. Konishi, and M. Takeuchi, 1983: Simultaneous observation of snowfall intensity and visibility in winter at Sapporo. Low Temp. Sci, 42A, 147156.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E., T. Schuur, and A. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., J. Milbrandt, and B.-B. Zhou, 2010: Visibility parameterization for forecasting model applications. Fifth Int. Conf. on Fog, Fog Collection and Dew, Münster, Germany, IFDA, 227–230, https://meetingorganizer.copernicus.org/FOGDEW2010/FOGDEW2010-112.pdf.

  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesch, M., 1999: Fall velocity and shape of snowflakes. Ph.D. thesis, Swiss Federal Institute of Technology, 123 pp., http://ecollection.library.ethz.ch/eserv/eth:23207/eth-23207-02.pdf.

  • Hassan, D., P. A. Taylor, and G. A. Isaac, 2017: Snowfall rate estimation using C-band polarimetric radars. Meteor. Appl., 24, 142156, https://doi.org/10.1002/met.1613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendry, A., Y. Antar, and G. McCormick, 1987: On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Sci., 22, 3750, https://doi.org/10.1029/RS022i001p00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, https://doi.org/10.1175/2009JTECHA1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res., 153, 3448, https://doi.org/10.1016/j.atmosres.2014.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Interagency Council on Advancing Meteorological Services, 2017: Surface weather observations and reports. OFCM Federal Meteorological Handbook 1, 98 pp.

  • Kocin, P. J., and L. W. Uccellini, 2004: A snowfall impact scale derived from Northeast storm snowfall distributions. Bull. Amer. Meteor. Soc., 85, 177194, https://doi.org/10.1175/BAMS-85-2-Kocin.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koschmieder, H. 1924: Theorie der horizontalen Sechtweite (Theory of horizontal visibility). Beitr. Phys. Freien Atmos., 12, 3353.

  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillesæter, O., 1965: Parallel-beam attenuation of light, particularly by falling snow. J. Appl. Meteor., 4, 607613, https://doi.org/10.1175/1520-0450(1965)004<0607:PBAOLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: Growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., K. Aydin, E. Cothiaux, and J. Verlinde, 2015: Retrieving cloud ice water content using millimeter- and centimeter wavelength radar polarimetric observables. J. Appl. Meteor. Climatol., 54, 596604, https://doi.org/10.1175/JAMC-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S., and A. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S., R. Reinking, and I. Djalalova, 2005a: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S., A. J. Heymsfield, and Z. Wang, 2005b: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, https://doi.org/10.1029/2005GL023210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, M., 1966: Light scattering and particle aggregation in snow storms. J. Glaciol., 6, 237248, https://doi.org/10.1017/S0022143000019250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and J. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, https://doi.org/10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. Pitter, 1990: Mass-dimensional relationship for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, H., and H. Brown, 1977: Measurements of visibility and radar reflectivity during snowstorms in the AFGL Mesonet. NASA STI/Recon Tech. Rep. 78, 34 pp.

  • Murphy, A., A. Ryzhkov, and P. Zhang, 2020: Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements. J. Atmos. Oceanic Technol., 37, 16231642, https://doi.org/10.1175/JTECH-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. Wolde, K. Baibakov, and A. Korolev, 2017: Determination and estimation of high ice water content using X-band and W-band dual-polarization airborne radar data.38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 89, https://ams.confex.com/ams/38RADAR/webprogram/Paper321101.html.

  • Nguyen, C. M., M. Wolde, and A. Korolev, 2019: Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar. Atmos. Meas. Tech., 12, 58975911, https://doi.org/10.5194/amt-12-5897-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2019: Snow squall warning service update for winter season 2019-2020. NOAA Doc., 2 pp., https://www.weather.gov/media/nwr/Snow%20Squall_WRN_110519.pdf.

  • NWS, 1998: Automated Surface Observing System (ASOS) user’s guide. NOAA Doc., 61 pp.

  • O’Brien, H. W., 1970: Visibility and light attenuation in falling snow. J. Appl. Meteor., 9, 671683, https://doi.org/10.1175/1520-0450(1970)009<0671:VALAIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poljakova, E. A., and V. D. Tretjakov, 1960: Visibility in falling snow. Gl. Geofiz. Obs., 100, 5357.

  • Rasmussen, R. M., J. Vivekanandan, J. Cole, B. Myers, and C. Masters, 1999: The estimation of snowfall rate using visibility. J. Appl. Meteor., 38, 15421563, https://doi.org/10.1175/1520-0450(1999)038<1542:TEOSRU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer International Publishing, 486 pp., https://doi.org/10.1007/978-3-030-05093-1.

    • Crossref
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Bukovčić, A. Murphy, P. Zhang, and G. McFarquhar, 2018: Ice microphysical retrievals using polarimetric radar data. 10th European Conf. on Radar in Meteorology and Hydrology, Netherlands, KNMI, 40, https://projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf.

  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-disdrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299307, https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, M. F., J. H. Lawrimore, R. R. Heim Jr., D. A. Robinson, M. R. Gerbush, and T. W. Estilow, 2014: The regional snowfall index. Bull. Amer. Meteor. Soc., 95, 18351848, https://doi.org/10.1175/BAMS-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stallabrass, J. R., 1985: Measurements of the concentration of falling snow. Snow Property Measurements Workshop, Lake Louise, AB, Canada, National Research Council Canada, 389–410.

  • Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385404, https://doi.org/10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, https://doi.org/10.1109/36.285183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, C., and K. L. S. Gunn, 1969: Measurement of snowfall by optical attenuation. J. Appl. Meteor., 8, 110121, https://doi.org/10.1175/1520-0450(1969)008<0110:MOSBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2015: Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteor. Climatol., 54, 573595, https://doi.org/10.1175/JAMC-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2003: Manual on the Global Observing System. WMO Rep. 544, 50 pp., https://www.wmo.int/pages/prog/www/OSY/Manual/WMO544.pdf.

  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO Rep. 8, 716 pp., http://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf.

  • Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053723, https://doi.org/10.1175/JAS3563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

All Time Past Year Past 30 Days
Abstract Views 91 91 91
Full Text Views 13 13 13
PDF Downloads 20 20 20

Polarimetric Radar Relations for Estimation of Visibility in Aggregated Snow

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The intrinsic uncertainty of radar-based retrievals in snow originates from a large diversity of snow growth habits, densities, and particle size distributions, all of which can make interpreting radar measurements of snow very challenging. The application of polarimetric radar for snow measurements can mitigate some of these issues. In this study, a novel polarimetric method for quantification of the extinction coefficient and visibility in snow, based on the joint use of radar reflectivity at horizontal polarization Z and specific differential phase KDP, is introduced. A large 2D-video-disdrometer snow dataset from central Oklahoma is used to derive a polarimetric bivariate power-law relation for the extinction coefficient, σe(KDP,Z)=γKDPαZβ. The relation is derived for particle aspect ratios ranging from 0.5 to 0.8 and the width of the canting angle distribution ranging from 0° to 40°, values typical of aggregated snow, and validated via theoretical and analytical derivations/simulations. The multiplier of the relation is sensitive to variations in particles’ densities, the width of the canting angle distribution, and particles’ aspect ratios, whereas the relation’s exponents are practically invariant to changes in the latter two parameters. This novel approach is applied to polarimetric S-band WSR-88D data and verified against previous studies and in situ measurements of the extinction coefficient for four snow events in the eastern United States. The polarimetric radar estimates of the extinction coefficient exhibit smaller biases in comparison to previous studies concerning the ground measurements. The results indicate that there is good potential for reliable radar estimates of visibility from polarimetric weather radars, a parameter inversely proportional to the extinction coefficient.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Petar Bukovčić, petar.bukovcic@ou.edu

Abstract

The intrinsic uncertainty of radar-based retrievals in snow originates from a large diversity of snow growth habits, densities, and particle size distributions, all of which can make interpreting radar measurements of snow very challenging. The application of polarimetric radar for snow measurements can mitigate some of these issues. In this study, a novel polarimetric method for quantification of the extinction coefficient and visibility in snow, based on the joint use of radar reflectivity at horizontal polarization Z and specific differential phase KDP, is introduced. A large 2D-video-disdrometer snow dataset from central Oklahoma is used to derive a polarimetric bivariate power-law relation for the extinction coefficient, σe(KDP,Z)=γKDPαZβ. The relation is derived for particle aspect ratios ranging from 0.5 to 0.8 and the width of the canting angle distribution ranging from 0° to 40°, values typical of aggregated snow, and validated via theoretical and analytical derivations/simulations. The multiplier of the relation is sensitive to variations in particles’ densities, the width of the canting angle distribution, and particles’ aspect ratios, whereas the relation’s exponents are practically invariant to changes in the latter two parameters. This novel approach is applied to polarimetric S-band WSR-88D data and verified against previous studies and in situ measurements of the extinction coefficient for four snow events in the eastern United States. The polarimetric radar estimates of the extinction coefficient exhibit smaller biases in comparison to previous studies concerning the ground measurements. The results indicate that there is good potential for reliable radar estimates of visibility from polarimetric weather radars, a parameter inversely proportional to the extinction coefficient.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Petar Bukovčić, petar.bukovcic@ou.edu
Save