• Alpers, W., 1985: Theory of radar imaging of internal waves. Nature, 314, 245247, https://doi.org/10.1038/314245a0.

  • Apel, J. R., H. M. Byrne, J. R. Proni, and R. L. Charnell, 1975: Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res., 80, 865881, https://doi.org/10.1029/JC080i006p00865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., S. Wang, and X. Long, 2006: A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Eng., 33, 974980, https://doi.org/10.1016/j.oceaneng.2005.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., R.-C. Lien, Y. J. Yang, T. Y. Tang, and J. Wang, 2008: A composite view of surface signatures and interior properties of nonlinear internal waves: Observations and applications. J. Atmos. Oceanic Technol., 25, 12181227, https://doi.org/10.1175/2007JTECHO574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhry, A., and R. Moore, 1984: Tower-based backscatter measurements of the sea. IEEE J. Oceanic Eng., 9, 309316, https://doi.org/10.1109/JOE.1984.1145648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., S. M. Flatté, and C. Bracher, 1994: Internal-wave effects on 1000-km oceanic acoustic pulse propagation: Simulation and comparison with experiment. J. Acoust. Soc. Amer., 96, 452468, https://doi.org/10.1121/1.411331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., N. Kumar, S. H. Suanda, T. M. Freismuth, and J. H. MacMahan, 2018: Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr., 48, 123143, https://doi.org/10.1175/JPO-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortes, C., and V. Vapnik, 1995: Support-vector networks. Mach. Learn., 20, 273297, https://doi.org/10.1007/BF00994018.

  • Friedman, J. H., 1997: On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Discovery, 1, 5577, https://doi.org/10.1023/A:1009778005914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, T. Talipova, and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr., 34, 27742791, https://doi.org/10.1175/JPO2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., and L. Shen, 2020: Direct simulation of surface roughness signature of internal wave with deterministic energy-conservative model. J. Fluid Mech., 891, R3, https://doi.org/10.1017/jfm.2020.200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 1992: Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243, 133154, https://doi.org/10.1017/S0022112092002660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., W. K. Melville, and J. W. Miles, 1984: On interfacial solitary waves over slowly varying topography. J. Fluid Mech., 149, 305317, https://doi.org/10.1017/S0022112084002664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahaye, N., J. Gula, and G. Roullet, 2019: Sea surface signature of internal tides. Geophys. Res. Lett., 46, 38803890, https://doi.org/10.1029/2018GL081848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and R. C. Beardsley, 1974: The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79, 453462, https://doi.org/10.1029/JC079i003p00453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-T., and B. J. Schachter, 1980: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci., 9, 219242, https://doi.org/10.1007/BF00977785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leichter, J. J., G. Shellenbarger, S. J. Genovese, and S. R. Wing, 1998: Breaking internal waves on a Florida (USA) coral reef: A plankton pump at work? Mar. Ecol. Prog. Ser., 166, 8397, https://doi.org/10.3354/meps166083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, B., H. C. Graber, J. Xue, and R. Romeiser, 2013: Analysis of internal wave signatures in marine radar data. IEEE Trans. Geosci. Remote Sens., 51, 48404852, https://doi.org/10.1109/TGRS.2012.2230635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and Coauthors, 2020a: Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., 50, 29652981, https://doi.org/10.1175/JPO-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and Coauthors, 2020b: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J., and W. Smyth, 2006: The pressure disturbance of a nonlinear internal wave train. J. Fluid Mech., 558, 153177, https://doi.org/10.1017/S0022112006000036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, L. M., 1986: Linear feature detection and enhancement in noisy images via the radon transform. Pattern Recognit. Lett., 4, 279284, https://doi.org/10.1016/0167-8655(86)90009-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., and Coauthors, 2019: Quantifying the impact of nonlinear internal waves on the marine atmospheric surface layer. 2019 IEEE/OES 12th Current, Waves and Turbulence Measurement (CWTM), San Diego, CA, IEEE, https://doi.org/10.1109/CWTM43797.2019.8955282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, A. R., and T. L. Burch, 1980: Internal solitons in the Andaman Sea. Science, 208, 451460, https://doi.org/10.1126/science.208.4443.451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osuna, E., R. Freund, and F. Girosit, 1997: Training support vector machines: An application to face detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, IEEE, 130–136, https://doi.org/10.1109/CVPR.1997.609310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radon, J., 2005: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Classic Papers in Modern Diagnostic Radiology, A. M. K. Thomas, A. K. Banerjee, and U. Busch, Eds., Springer, 5–21.

    • Search Google Scholar
    • Export Citation
  • Ramos, R. J., B. Lund, and H. C. Graber, 2009: Determination of internal wave properties from X-band radar observations. Ocean Eng., 36, 10391047, https://doi.org/10.1016/j.oceaneng.2009.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2009: Observations of polarity reversal in shoaling nonlinear internal waves. J. Phys. Oceanogr., 39, 691701, https://doi.org/10.1175/2008JPO3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Therriault, J.-C., and G. Lacroix, 1976: Nutrients, chlorophyll, and internal tides in the St. Lawrence estuary. J. Fisheries Board Canada, 33, 27472757, https://doi.org/10.1139/f76-326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., W. Rosenthal, and F. Ziemer, 1985: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., 90, 10491059, https://doi.org/10.1029/JC090iC01p01049.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 39 39 39
Full Text Views 7 7 7
PDF Downloads 12 12 12

Automated Detection, Classification, and Tracking of Internal Wave Signatures Using X-Band Radar in the Inner Shelf

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • 2 Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

A method based on machine learning and image processing techniques has been developed to track the surface expression of internal waves in near–real time. X-band radar scans are first preprocessed and averaged to suppress surface wave clutter and enhance the signal-to-noise ratio of persistent backscatter features driven by gradients in surface currents. A machine learning algorithm utilizing a support vector machine (SVM) model is then used to classify whether or not the image contains an internal solitary wave (ISW) or internal tide bore (bore). The use of machine learning is found to allow rapid assessment of the large dataset, and provides insight on characterizing optimal environmental conditions to allow for radar illumination and detection of ISWs and bores. Radon transforms and local maxima detections are used to locate these features within images that are determined to contain an ISW or bore. The resulting time series of locations is used to create a map of propagation speed and direction that captures the spatiotemporal variability of the ISW or bore in the coastal environment. This technique is applied to 2 months of data collected near Point Sal, California, and captures ISW and bore propagation speed and direction information that currently cannot be measured with instruments such as moorings and synthetic aperture radar (SAR).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean Celona, scelona@ucsd.edu

Abstract

A method based on machine learning and image processing techniques has been developed to track the surface expression of internal waves in near–real time. X-band radar scans are first preprocessed and averaged to suppress surface wave clutter and enhance the signal-to-noise ratio of persistent backscatter features driven by gradients in surface currents. A machine learning algorithm utilizing a support vector machine (SVM) model is then used to classify whether or not the image contains an internal solitary wave (ISW) or internal tide bore (bore). The use of machine learning is found to allow rapid assessment of the large dataset, and provides insight on characterizing optimal environmental conditions to allow for radar illumination and detection of ISWs and bores. Radon transforms and local maxima detections are used to locate these features within images that are determined to contain an ISW or bore. The resulting time series of locations is used to create a map of propagation speed and direction that captures the spatiotemporal variability of the ISW or bore in the coastal environment. This technique is applied to 2 months of data collected near Point Sal, California, and captures ISW and bore propagation speed and direction information that currently cannot be measured with instruments such as moorings and synthetic aperture radar (SAR).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean Celona, scelona@ucsd.edu
Save