• Aleynik, D., A. C. Dale, M. Porter, and K. Davidson, 2016: A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography. Harmful Algae, 53, 102117, https://doi.org/10.1016/j.hal.2015.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blockley, E., M. Martin, and P. Hyder, 2012: Validation of foam near-surface ocean current forecasts using Lagrangian drifting buoys. Ocean Sci., 8, 551565, https://doi.org/10.5194/os-8-551-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de La Lama, M. S., J. LaCasce, and H. K. Fuhr, 2016: The vertical structure of ocean eddies. Dyn. Stat. Climate Syst., 2016, 29382954, https://doi.org/10.1093/CLIMSYS/DZW001.

    • Search Google Scholar
    • Export Citation
  • Drews, A., and R. J. Greatbatch, 2016: Atlantic multidecadal variability in a model with an improved North Atlantic Current. Geophys. Res. Lett., 43, 81998206, https://doi.org/10.1002/2016GL069815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., and S. T. Gille, 2009: Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data. J. Geophys. Res., 114, C06003, https://doi.org/10.1029/2008JC005170.

    • Search Google Scholar
    • Export Citation
  • ESR, 2009: OSCAR third degree resolution ocean surface currents, version 1. PO.DAAC, accessed 28 May 2019, https://doi.org/10.5067/OSCAR-03D01.

    • Crossref
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. California Institute of Technology Tech. Rep., 10 pp.

  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2019: ECCO version 4 release 4. California Institute of Technology Tech. Rep. 17 pp.

  • Hansen, D. V., and P.-M. Poulain, 1996: Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol., 13, 900909, https://doi.org/10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausman, J., F. Bonjean, and K. Dohan, 2009: Ocean Surface Current Analysis (OSCAR) third degree resolution user’s handbook. California Institute of Technology Doc., 10 pp., https://podaac-tools.jpl.nasa.gov/drive/files/allData/oscar/preview/L4/oscar_third_deg/docs/oscarthirdguide.pdf.

  • Hui, Z., and Y. Xu, 2016: The impact of wave-induced Coriolis-Stokes forcing on satellite-derived ocean surface currents. J. Geophys. Res. Oceans, 121, 410426, https://doi.org/10.1002/2015JC011082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., F. Bonjean, G. S. Lagerloef, J. T. Gunn, and G. T. Mitchum, 2007: Validation and error analysis of OSCAR sea surface currents. J. Atmos. Oceanic Technol., 24, 688701, https://doi.org/10.1175/JTECH1971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., S. Nishino, and J. Inoue, 2015: Fixed-point observation of mixed layer evolution in the seasonally ice-free Chukchi Sea: Turbulent mixing due to gale winds and internal gravity waves. J. Phys. Oceanogr., 45, 836853, https://doi.org/10.1175/JPO-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and S. Dong, 2004: The relationship of western boundary current heat transport and storage to midlatitude ocean-atmosphere interaction. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 347–363.

    • Crossref
    • Export Citation
  • Knudsen, P., O. Andersen, and N. Maximenko, 2021: A new ocean mean dynamic topography model, derived from a combination of gravity, altimetry and drifter velocity data. Adv. Space Res., https://doi.org/10.1016/j.asr.2019.12.001, in press.

    • Search Google Scholar
    • Export Citation
  • Kubryakov, A., and S. Stanichny, 2011: Mean dynamic topography of the Black Sea, computed from altimetry, drifter measurements and hydrology data. Ocean Sci., 7, 745753, https://doi.org/10.5194/os-7-745-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved near-surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res. I, 124, 7392, https://doi.org/10.1016/j.dsr.2017.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., H. Wijesekera, E. Jarosz, M.-J. Lilover, A. Pirro, Z. Silver, L. Centurioni, and H. Fernando, 2016: A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal. J. Geophys. Res. Oceans, 121, 58985915, https://doi.org/10.1002/2016JC011697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and P. J. Flament, 2013: Extent and energetics of the Hawaiian Lee Countercurrent. Oceanography, 26 (1), 5865, https://doi.org/10.5670/oceanog.2013.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and L. Centurioni, 2019: Global drifter program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information, accessed 24 July 2019, https://doi.org/10.25921/7ntx-z961.

    • Crossref
    • Export Citation
  • Müller, V., D. Kieke, P. G. Myers, C. Pennelly, R. Steinfeldt, and I. Stendardo, 2019: Heat and freshwater transport by mesoscale eddies in the southern subpolar North Atlantic. J. Geophys. Res. Oceans, 124, 55655585, https://doi.org/10.1029/2018JC014697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of Holey-Sock and Tristar drifters. Deep-Sea Res. I, 42, 19511964, https://doi.org/10.1016/0967-0637(95)00076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, M. R., and et al. , 2019: An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE-II forcing. J. Adv. Model. Earth Syst., 11, 14381458, https://doi.org/10.1029/2018MS001373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., R. Gerin, E. Mauri, and R. Pennel, 2009: Wind effects on drogued and undrogued drifters in the eastern Mediterranean. J. Atmos. Oceanic Technol., 26, 11441156, https://doi.org/10.1175/2008JTECHO618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., J. E. Byers, P. Pappalardo, J. P. Wares, and D. Marshall, 2014: Circulation constrains the evolution of larval development modes and life histories in the coastal ocean. Ecology, 95, 10221032, https://doi.org/10.1890/13-0970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y.-K., S. Peng, C.-X. Liang, and R. Lumpkin, 2014: On the estimation of Lagrangian diffusivity: Influence of nonstationary mean flow. J. Phys. Oceanogr., 44, 27962811, https://doi.org/10.1175/JPO-D-14-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, K. J., and R. M. Ponte, 2008: Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models. J. Geophys. Res., 113, C12013, https://doi.org/10.1029/2008JC004903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, https://doi.org/10.1002/2014GL061773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. Morrow, and K. Speer, 2008: Eddy heat diffusion and subantarctic mode water formation. Geophys. Res. Lett., 35, L05607, https://doi.org/10.1029/2007GL032827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikhakolli, R., R. Sharma, S. Basu, B. Gohil, A. Sarkar, and K. Prasad, 2013: Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. J. Earth Syst. Sci., 122, 187199, https://doi.org/10.1007/s12040-012-0258-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudre, J., C. Maes, and V. Garçon, 2013: On the global estimates of geostrophic and Ekman surface currents. Limnol. Oceanogr. Fluids Environ., 3 (1), 120, https://doi.org/10.1215/21573689-2071927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., and S. G. Penny, 2019: Lagrangian data assimilation of surface drifters in a double-gyre ocean model using the local ensemble transform Kalman filter. Mon. Wea. Rev., 147, 45334551, https://doi.org/10.1175/MWR-D-18-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., R. M. Ponte, I. Fukumori, and O. Wang, 2014: Estimating satellite salinity errors for assimilation of Aquarius and SMOS data into climate models. J. Geophys. Res. Oceans, 119, 47324744, https://doi.org/10.1002/2014JC009906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, O., I. Fukumori, and I. Fenty, 2019: ECCO version 4 release 4 user guide. JPL Doc., 14 pp., https://ecco-group.org/docs/v4r4_user_guide.pdf.

  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography, 22 (2), 88103, https://doi.org/10.5670/oceanog.2009.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., A. L. Ponte, S. Elipot, D. Menemenlis, E. D. Zaron, and R. Abernathey, 2019: Surface kinetic energy distributions in the global oceans from a high-resolution numerical model and surface drifter observations. Geophys. Res. Lett., 46, 97579766, https://doi.org/10.1029/2019GL083074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2003: Lateral diffusivity and Lagrangian scales in the Pacific Ocean as derived from drifter data. J. Geophys. Res., 108, 3141, https://doi.org/10.1029/2002JC001596.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 55 55 44
Full Text Views 30 30 25
PDF Downloads 36 36 31

Using Drifter Velocity Measurements to Assess and Constrain Coarse-Resolution Ocean Models

View More View Less
  • 1 Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

Properly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper-ocean circulation and air–sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-Time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model–data differences, errors, and signal-to-noise ratios, our results indicate that constraining ocean-state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mengnan Zhao, mzhao@aer.com

Abstract

Properly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper-ocean circulation and air–sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-Time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model–data differences, errors, and signal-to-noise ratios, our results indicate that constraining ocean-state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mengnan Zhao, mzhao@aer.com
Save