• Arnoso, J., M. Benavent, B. Ducarme, and F. G. Montesinos, 2006: A new ocean tide loading model in the Canary Islands region. J. Geodyn., 41, 100111, https://doi.org/10.1016/j.jog.2005.08.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., and K. R. Thompson, 2007: Tide-surge interaction off the east coast of Canada and northeastern United States. J. Geophys. Res., 112, C06008, https://doi.org/10.1029/2006JC003793.

    • Search Google Scholar
    • Export Citation
  • Caglar, H., N. Caglar, and K. Elfaituri, 2006: B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems. Appl. Math. Comput., 175, 7279, https://doi.org/10.1016/j.amc.2005.07.019.

    • Search Google Scholar
    • Export Citation
  • Cancet, M., O. B. Andersen, F. Lyard, D. Cotton, and J. Benveniste, 2018: Arctide2017, A high-resolution regional tidal model in the Arctic Ocean. Adv. Space Res., 62, 13241343, https://doi.org/10.1016/j.asr.2018.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., F. Lyard, M. Cancet, A. Guillot, and L. Roblou, 2012: FES 2012: A new global tidal model taking advantage of nearly 20 years of altimetry. Proc. 20 Years of Progress in Radar Altimetry Symp., Venice, Italy, ESA, SP-710.

  • Carrère, L., F. Lyard, M. Cancet, and A. Guillot, 2015: FES 2014, A new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. Geophysical Research Abstracts, Vol. 17, Abstract 5481.

  • Chen, B., R. Garcia-Bolós, L. Jódar, and M. D. Roselló, 2003: The truncation error of the two-variable Chebyshev series expansions. Comput. Math. Appl., 45, 16471653, https://doi.org/10.1016/S0898-1221(03)00144-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and L. Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27, 762781, https://doi.org/10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, https://doi.org/10.1029/94JC01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L. L., B. Wang, and X. Q. Lv, 2011: Cotidal charts near Hawaii derived from TOPEX/Poseidon altimetry data. J. Atmos. Oceanic Technol., 28, 606614, https://doi.org/10.1175/2010JTECHO809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., Y. Wang, Z. Wei, B. H. Choi, X. Wang, and J. Wang, 2004: Empirical cotidal charts of the Bohai, Yellow, and East China seas from 10 years of TOPEX/Poseidon altimetry. J. Geophys. Res., 109, C11006, https://doi.org/10.1029/2004JC002484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., X. Lu, Z. Qiu, and J. Zhao, 2004: Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/Poseidon altimeter data. Cont. Shelf Res., 24, 15211529, https://doi.org/10.1016/j.csr.2004.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., 1998: The Chebyshev polynomial fitting properties of discrete cosine transform. Signal Process. Image Commun., 13, 1520, https://doi.org/10.1016/S0923-5965(97)00044-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janeković, I., J. Bobanović, and M. Kuzmić, 2003: The Adriatic Sea M2 and K1 tides by 3D model and data assimilation. Estuarine Coastal Shelf Sci., 57, 873885, https://doi.org/10.1016/S0272-7714(02)00417-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letellier, T., 2004: Etude des ondes de marée sur les plateaux continentaux (Study of tidal waves on the continental shelves). Ph.D. thesis, University of Toulouse III-Paul Sabatier, 237 pp.

  • Longuet-Higgins, M. S., 1969: On the transport of mass by time-varying ocean currents. Deep-Sea Res., 16, 431447, https://doi.org/10.1016/0011-7471(69)90031-X.

    • Search Google Scholar
    • Export Citation
  • Mackinnon, J. A., M. H. Alford, J. Ansong, and Z. Zhao, 2017: Climate process team on internal-wave driven ocean mixing. Bull. Amer. Meteor. Soc., 99, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J. C., and D. C. Handscomb, 2002: Chebyshev Polynomials. Taylor and Francis/CRC Press, 360 pp.

    • Crossref
    • Export Citation
  • Matsumoto, K., T. Takanezawa, and M. Ooe, 2000: Ocean tide models developed by assimilating TOPEX/Poseidon altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567581, https://doi.org/10.1023/A:1011157212596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzega, P., and M. Berge, 1994: Ocean tides in the Asian semienclosed seas from TOPEX/Poseidon. J. Geophys. Res., 99, 24 86724 881, https://doi.org/10.1029/94JC01756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1997: Once again: Once again—Tidal friction. Prog. Oceanogr., 40, 735, https://doi.org/10.1016/S0079-6611(97)00021-9.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreiro, F. A., E. D’Onofrio, W. Grismeyer, M. Fiore, and M. Saraceno, 2014: Comparison of tide model outputs for the northern region of the Antarctic Peninsula using satellite altimeters and tide gauge data. Polar Sci., 8, 1023, https://doi.org/10.1016/j.polar.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piccioni, G., D. Dettmering, C. Schwatke, M. Passaro, and F. Seitz, 2019: Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry. Adv. Space Res., https://doi.org/10.1016/j.asr.2019.08.030, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picot, N., K. Case, S. Desai, and P. Vincent, 2003: AVISO and PODAAC User Handbook: IGDR and GDR Jason Products. CNES and NASA Doc. SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC), 115 pp.

  • Ray, R. D., and C. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and C. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, M., A. P. De Madrid, C. Manoso, and B. M. Vinagre, 2013: IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Trans., 52, 461468, https://doi.org/10.1016/j.isatra.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., 2004: Effect of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian through flow region. Ocean Modell., 6, 3149, https://doi.org/10.1016/S1463-5003(02)00057-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddig, N. A., A. M. Al-Subhi, and M. A. Alsaafani, 2019: Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia, 61, 401411, https://doi.org/10.1016/j.oceano.2019.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. J. E., B. A. C. Ambrosius, K. F. Wakker, P. L. Woodworth, and J. M. Vassie, 1998: Ocean tides from harmonic and response analysis on TOPEX/Poseidon altimetry. Adv. Space Res., 22, 15411548, https://doi.org/10.1016/S0273-1177(99)00068-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y. M., R. Grimshaw, B. Sanderson, and G. Holland, 1996: A numerical study of storm surges and tide, with application to the north Queensland coast. J. Phys. Oceanogr., 26, 27002711, https://doi.org/10.1175/1520-0485(1996)026<2700:ANSOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trefethen, L. N., 2013: Approximation Theory and Approximation Practice. SIAM, 45 pp.

  • Yanagi, T., A. Morimoto, and K. Ichikawa, 1997: Co-tidal and co-range charts for the East China Sea and the Yellow Sea derived from satellite altimetric data. J. Oceanogr., 53, 303309.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. Girton, T. Johnston, and G. Carter, 2011: Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res., 116, C12039, https://doi.org/10.1029/2011JC007045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, and J. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25 (2), 4251, https://doi.org/10.5670/oceanog.2012.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. T. F. 1979: On the Euler-Lagrange transformation and the Stokes drift in the presence of oscillatory and residual currents. Deep-Sea Res., 26A, 505520, https://doi.org/10.1016/0198-0149(79)90093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 39
PDF Downloads 35 35 35

Ocean Tides near Hawaii from Satellite Altimeter Data. Part I

View More View Less
  • 1 Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
  • | 2 Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Restricted access

Abstract

Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b), and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xianqing Lv, xqinglv@ouc.edu.cn; Xu Chen, chenxu001@ouc.edu.cn

Abstract

Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b), and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xianqing Lv, xqinglv@ouc.edu.cn; Xu Chen, chenxu001@ouc.edu.cn
Save