The NASA GSFC 94-GHz Airborne Solid-State Cloud Radar System (CRS)

Matthew L. Walker McLinden aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew L. Walker McLinden in
Current site
Google Scholar
PubMed
Close
,
Lihua Li aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Lihua Li in
Current site
Google Scholar
PubMed
Close
,
Gerald M. Heymsfield aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Michael Coon aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael Coon in
Current site
Google Scholar
PubMed
Close
, and
Amber Emory aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Amber Emory in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NASA Goddard Space Flight Center’s (GSFC’s) W-band (94 GHz) Cloud Radar System (CRS) has been comprehensively updated to modern solid-state and digital technology. This W-band (94 GHz) radar flies in nadir-pointing mode on the NASA ER-2 high-altitude aircraft, providing polarimetric reflectivity and Doppler measurements of clouds and precipitation. This paper describes the design and signal processing of the upgraded CRS. It includes details on the hardware upgrades [solid-state power amplifier (SSPA) transmitter, antenna, and digital receiver] including a new reflectarray antenna and solid-state transmitter. It also includes algorithms, including internal loop-back calibration, external calibration using a direct relationship between volume reflectivity and the range-integrated backscatter of the ocean, and a modified staggered–pulse repetition frequency (PRF) Doppler algorithm that is highly resistant to unfolding errors. Data samples obtained by upgraded CRS through recent NASA airborne science missions are provided.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Walker McLinden, matthew.l.mclinden@nasa.gov

Abstract

The NASA Goddard Space Flight Center’s (GSFC’s) W-band (94 GHz) Cloud Radar System (CRS) has been comprehensively updated to modern solid-state and digital technology. This W-band (94 GHz) radar flies in nadir-pointing mode on the NASA ER-2 high-altitude aircraft, providing polarimetric reflectivity and Doppler measurements of clouds and precipitation. This paper describes the design and signal processing of the upgraded CRS. It includes details on the hardware upgrades [solid-state power amplifier (SSPA) transmitter, antenna, and digital receiver] including a new reflectarray antenna and solid-state transmitter. It also includes algorithms, including internal loop-back calibration, external calibration using a direct relationship between volume reflectivity and the range-integrated backscatter of the ocean, and a modified staggered–pulse repetition frequency (PRF) Doppler algorithm that is highly resistant to unfolding errors. Data samples obtained by upgraded CRS through recent NASA airborne science missions are provided.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Walker McLinden, matthew.l.mclinden@nasa.gov
Save
  • Barros, A., and Coauthors, 2014: NASA GPM-ground validation: Integrated Precipitation and Hydrology Experiment 2014 science plan. NASA Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Bringi, V., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Caylor, I., G. Heymsfield, R. Meneghini, and L. Miller, 1997: Correction of sampling errors in ocean surface cross-sectional estimates from nadir-looking weather radar. J. Atmos. Oceanic Technol., 14, 203210, https://doi.org/10.1175/1520-0426(1997)014<0203:COSEIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. Courier Corporation, 592 pp.

  • Evans, K. F., J. R. Wang, P. E. Racette, G. Heymsfield, and L. Li, 2005: Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. J. Appl. Meteor., 44, 839859, https://doi.org/10.1175/JAM2250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukao, S., K. Hamazu, and R. J. Doviak, 2014: Radar for Meteorological and Atmospheric Observations. Springer, 537 pp.

    • Crossref
    • Export Citation
  • Hand, T., and Coauthors, 2013: Dual-band shared aperture reflector/reflectarray antenna: Designs, technologies and demonstrations for NASA’s ACE radar. 2013 IEEE Int. Symp. on Phased Array Systems and Technology, Waltham, MA, IEEE, 352–358, https://doi.org/10.1109/ARRAY.2013.6731854.

    • Crossref
    • Export Citation
  • Holleman, I., and H. Beekhuis, 2003: Analysis and correction of dual PRF velocity data. J. Atmos. Oceanic Technol., 20, 443453, https://doi.org/10.1175/1520-0426(2003)20<443:AACODP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., and P. May, 2003: Correction of dual PRF velocity errors for operational Doppler weather radars. J. Atmos. Oceanic Technol., 20, 429442, https://doi.org/10.1175/1520-0426(2003)20<429:CODPVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., 1995: A generalized surface echo radar equation for down-looking pencil beam radar. IEICE Trans. Commun., 78, 12451248.

  • Li, L., G. M. Heymsfield, P. E. Racette, L. Tian, and E. Zenker, 2004: A 94-GHz cloud radar system on a NASA high-altitude ER-2 aircraft. J. Atmos. Oceanic Technol., 21, 13781388, https://doi.org/10.1175/1520-0426(2004)021<1378:AGCRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., G. M. Heymsfield, L. Tian, and P. E. Racette, 2005: Measurements of ocean surface backscattering using an airborne 94-GHz cloud radar-implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22, 10331045, https://doi.org/10.1175/JTECH1722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2016: The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). IEEE Trans. Geosci. Remote Sens., 54, 298310, https://doi.org/10.1109/TGRS.2015.2456501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, M. W., 2001: Radar Reflectivity of Land and Sea. 3rd ed. Artech House, 534 pp.

  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majurec, N., S. Sekelsky, S. Frasier, and S. Rutledge, 2004: The Advanced Multi-Frequency Radar (AMFR) for remote sensing of clouds and precipitation. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.6, https://ams.confex.com/ams/32Rad11Meso/webprogram/Paper96284.html.

  • McLinden, M. L., and Coauthors, 2013: Utilizing versatile transmission waveforms to mitigate pulse-compression range sidelobes with the HIWRAP radar. IEEE Geosci. Remote Sens. Lett., 10, 13651368, https://doi.org/10.1109/LGRS.2013.2241729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLinden, M. L., E. J. Wollack, G. M. Heymsfield, and L. Li, 2015: Reduced image aliasing with microwave radiometers and weather radar through windowed spatial averaging. IEEE Trans. Geosci. Remote Sens., 53, 66396649, https://doi.org/10.1109/TGRS.2015.2445100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA Dryden Flight Research Center, 2002: ER-2 airborne laboratory experimenter handbook. NASA Dryden Flight Research Center Tech. Rep., 133 pp., https://www.nasa.gov/sites/default/files/189893main_ER-2_handbook_02.pdf.

  • Probert-Jones, J., 1962: The radar equation in meteorology. Quart. J. Roy. Meteor. Soc., 88, 485495, https://doi.org/10.1002/qj.49708837810.

  • Rincon, R. F., T. Fatoyinbo, B. Osmanoglu, S. Lee, K. J. Ranson, G. Sun, M. Perrine, and C. Du Toit, 2015: EcoSAR: P-band digital beamforming polarimetric and single pass interferometric SAR. 2015 IEEE Radar Conf. (RadarCon), Arlington, VA, IEEE, 699–703, https://doi.org/10.1109/RADAR.2015.7131086.

    • Crossref
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421754, https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, https://doi.org/10.1029/2009JD013073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., Y. F. Dubel, and D. S. Zrnić, 2004: Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol., 21, 13891399, https://doi.org/10.1175/1520-0426(2004)021<1389:DIADOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., and Coauthors, 2015: A wing pod-based millimeter wavelength airborne cloud radar. Geosci. Instrum. Methods Data Syst., 4, 161176, https://doi.org/10.5194/gi-4-161-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 421 0 0
Full Text Views 1091 548 75
PDF Downloads 1139 475 40