Advancing Maritime Transparent Cirrus Detection Using the Advanced Baseline Imager “Cirrus” Band

Theodore M. McHardy aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Theodore M. McHardy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5996-5320
,
James R. Campbell bNaval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
,
David A. Peterson bNaval Research Laboratory, Monterey, California

Search for other papers by David A. Peterson in
Current site
Google Scholar
PubMed
Close
,
Simone Lolli cCNR-IMAA, Istituto di Metodologie per l’Analisi Ambientale, Tito Scalo, Italy

Search for other papers by Simone Lolli in
Current site
Google Scholar
PubMed
Close
,
Richard L. Bankert bNaval Research Laboratory, Monterey, California

Search for other papers by Richard L. Bankert in
Current site
Google Scholar
PubMed
Close
,
Anne Garnier dScience Systems Applications, Inc., Hampton, Virginia

Search for other papers by Anne Garnier in
Current site
Google Scholar
PubMed
Close
,
Arunas P. Kuciauskas bNaval Research Laboratory, Monterey, California

Search for other papers by Arunas P. Kuciauskas in
Current site
Google Scholar
PubMed
Close
,
Melinda L. Surratt bNaval Research Laboratory, Monterey, California

Search for other papers by Melinda L. Surratt in
Current site
Google Scholar
PubMed
Close
,
Jared W. Marquis eDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jared W. Marquis in
Current site
Google Scholar
PubMed
Close
,
Steven D. Miller fCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven D. Miller in
Current site
Google Scholar
PubMed
Close
,
Erica K. Dolinar bNaval Research Laboratory, Monterey, California

Search for other papers by Erica K. Dolinar in
Current site
Google Scholar
PubMed
Close
, and
Xiquan Dong aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xiquan Dong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We describe a quantitative evaluation of maritime transparent cirrus cloud detection, which is based on Geostationary Operational Environmental Satellite 16 (GOES-16) and developed with collocated Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) profiling. The detection algorithm is developed using one month of collocated GOES-16 Advanced Baseline Imager (ABI) channel-4 (1.378 μm) radiance and CALIOP 0.532-μm column-integrated cloud optical depth (COD). First, the relationships between the clear-sky 1.378-μm radiance, viewing/solar geometry, and precipitable water vapor (PWV) are characterized. Using machine-learning techniques, it is shown that the total atmospheric pathlength, proxied by airmass factor (AMF), is a suitable replacement for viewing zenith and solar zenith angles alone, and that PWV is not a significant problem over ocean. Detection thresholds are computed using the channel-4 radiance as a function of AMF. The algorithm detects nearly 50% of subvisual cirrus (COD < 0.03), 80% of transparent cirrus (0.03 < COD < 0.3), and 90% of opaque cirrus (COD > 0.3). Using a conservative radiance threshold results in 84% of cloudy pixels being correctly identified and 4% of clear-sky pixels being misidentified as cirrus. A semiquantitative COD retrieval is developed for GOES ABI based on the observed relationship between CALIOP COD and 1.378-μm radiance. This study lays the groundwork for a more complex, operational GOES transparent cirrus detection algorithm. Future expansion includes an overland algorithm, a more robust COD retrieval that is suitable for assimilation purposes, and downstream GOES products such as cirrus cloud microphysical property retrieval based on ABI infrared channels.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore M. McHardy, tmchardy@email.arizona.edu

Abstract

We describe a quantitative evaluation of maritime transparent cirrus cloud detection, which is based on Geostationary Operational Environmental Satellite 16 (GOES-16) and developed with collocated Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) profiling. The detection algorithm is developed using one month of collocated GOES-16 Advanced Baseline Imager (ABI) channel-4 (1.378 μm) radiance and CALIOP 0.532-μm column-integrated cloud optical depth (COD). First, the relationships between the clear-sky 1.378-μm radiance, viewing/solar geometry, and precipitable water vapor (PWV) are characterized. Using machine-learning techniques, it is shown that the total atmospheric pathlength, proxied by airmass factor (AMF), is a suitable replacement for viewing zenith and solar zenith angles alone, and that PWV is not a significant problem over ocean. Detection thresholds are computed using the channel-4 radiance as a function of AMF. The algorithm detects nearly 50% of subvisual cirrus (COD < 0.03), 80% of transparent cirrus (0.03 < COD < 0.3), and 90% of opaque cirrus (COD > 0.3). Using a conservative radiance threshold results in 84% of cloudy pixels being correctly identified and 4% of clear-sky pixels being misidentified as cirrus. A semiquantitative COD retrieval is developed for GOES ABI based on the observed relationship between CALIOP COD and 1.378-μm radiance. This study lays the groundwork for a more complex, operational GOES transparent cirrus detection algorithm. Future expansion includes an overland algorithm, a more robust COD retrieval that is suitable for assimilation purposes, and downstream GOES products such as cirrus cloud microphysical property retrieval based on ABI infrared channels.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore M. McHardy, tmchardy@email.arizona.edu
Save
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L., and D. Ellison, 2008: The wisdom of crowds—Ensembles and modules in environmental modelling. Geoderma, 147, 17, https://doi.org/10.1016/j.geoderma.2008.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, B., J. Casey, F. Padula, A. Pearlman, D. Pogorzala, and C. Cao, 2018: Independent validation of the Advanced Baseline Imager (ABI) on NOAA’s GOES-16: Post-launch ABI airborne science field campaign results. Earth Obs. Syst., 10764, 107640H, https://doi.org/10.1117/12.2323672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123140, https://doi.org/10.1007/BF00058655.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Campbell, J. R., and Coauthors, 2012: Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals. Atmos. Meas. Tech., 5, 27472794, https://doi.org/10.5194/AMT-5-2143-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and J. E. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, https://doi.org/10.5194/amt-8-435-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, https://doi.org/10.1016/j.atmosenv.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Rep., 26 pp., https://doi.org/10.3133/OFR20111073.

    • Crossref
    • Export Citation
  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 12411247, https://doi.org/10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B. C., and Y. J. Kaufman, 1995: Selection of the 1.375-μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52, 42314237, https://doi.org/10.1175/1520-0469(1995)052<4231:SOTMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B. C., A. F. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Lett., 20, 301304, https://doi.org/10.1029/93GL00106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamad, K., M. A. Khalil, and A. R. Alozi, 2019: Predicting freeway incident duration using machine learning. Int. J. Intell. Transp. Syst. Res., 18, 367380, https://doi.org/10.1007/S13177-019-00205-1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2010: ABI cloud mask. NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 93 pp.

  • Heidinger, A. K., 2012: ABI cloud height. NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 79 pp.

  • Lee, J., P. Yang, A. E. Dessler, B. C. Gao, and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 37213731, https://doi.org/10.1175/2009JAS3183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2019: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmos. Meas. Tech., 12, 703734, https://doi.org/10.5194/amt-12-703-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., and P. Di Girolamo, 2015: Principal component analysis approach to evaluate instrument performances in developing a cost-effective reliable instrument network for atmospheric measurements. J. Atmos. Oceanic Technol., 32, 16421649, https://doi.org/10.1175/JTECH-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., and Coauthors, 2017: Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteor. Climatol., 56, 12491257, https://doi.org/10.1175/JAMC-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. W., A. S. Bogdanoff, J. R. Campbell, J. A. Cummings, D. L. Westphal, N. J. Smith, and J. Zhang, 2017: Estimating infrared radiometric satellite sea surface temperature retrieval cold biases in the tropics due to unscreened optically thin cirrus clouds. J. Atmos. Oceanic Technol., 34, 355373, https://doi.org/10.1175/JTECH-D-15-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, K., and S. Platnick, 2010: Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties. J. Geophys. Res., 115, D24209, https://doi.org/10.1029/2010JD014872.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., P. Yang, and B. C. Gao, 2004: Optical thickness of tropical cirrus clouds derived from the MODIS 0.66 and 1.375-μm channels. IEEE Trans. Geosci. Remote Sens., 42, 833841, https://doi.org/10.1109/TGRS.2003.818939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., C. C. Schmidt, T. J. Schmit, and D. W. Hillger, 2012: A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens., 33, 39994028, https://doi.org/10.1080/01431161.2011.637529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., T. J. Schmit, C. J. Seaman, D. T. Lindsey, M. M. Gunshor, R. A. Kors, Y. Sumida, and D. W. Hillger, 2016: A sight for sore eyes: The return of true color to geostationary satellites. Bull. Amer. Meteor. Soc., 97, 18031816, https://doi.org/10.1175/BAMS-D-15-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2018: Short-term solar irradiance forecasting via satellite/model coupling. Sol. Energy, 168, 102117, https://doi.org/10.1016/j.solener.2017.11.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, https://doi.org/10.1109/TGRS.2008.2001351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NESDIS, 2018: ABI aerosol detection product. NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 70 pp.

  • Palmer, P. I., and Coauthors, 2001: Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment. J. Geophys. Res., 106, 14 53914 550, https://doi.org/10.1029/2000JD900772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., J. R. Campbell, E. J. Hyer, M. D. Fromm, G. P. Kablick, J. H. Cossuth, and M. T. DeLand, 2018: Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Climate Atmos. Sci., 1, 30, https://doi.org/10.1038/s41612-018-0039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, https://doi.org/10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., M. K. Griffin, and G. C. Dodd, 1989: Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications. J. Appl. Meteor., 28, 9198, https://doi.org/10.1175/1520-0450(1989)028<0091:OSAMPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Indagationes Math., 12, 173.

  • Vaughan, M. A., and Coauthors, 2020: Cloud–aerosol lidar infrared pathfinder satellite observations: Data management system data products catalog. NASA Doc. PC-SCI-503, 256 pp., https://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_Rev4x92.pdf.

  • Virts, K. S., J. M. Wallace, Q. Fu, and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 31133129, https://doi.org/10.1175/2010JAS3412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walther, A., W. Straka, and A. K. Heidinger, 2013: ABI algorithm theoretical basis document for daytime cloud optical and microphysical properties (DCOMP). NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 66 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Cloud_DCOMP_v3.0_Jun2013.pdf.

  • Wang, C., and X. Huang, 2014: Parallax correction in the analysis of multiple satellite data sets. IEEE Geosci. Remote Sens. Lett., 11, 965969, https://doi.org/10.1109/LGRS.2013.2283573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., P. Yang, A. Dessler, B. A. Baum, and Y. Hu, 2014: Estimation of the cirrus cloud scattering phase function from satellite observations. J. Quant. Spectrosc. Radiant. Transfer, 138, 3649, https://doi.org/10.1016/j.jqsrt.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, https://doi.org/10.1175/2008JTECHA1221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., M. A. Vaughan, A. Garnier, J. L. Tackett, J. D. Lambeth, and K. A. Powell, 2018: Extinction and optical depth retrievals for CALIPSO’s version 4 data release. Atmos. Meas. Tech., 11, 57015727, https://doi.org/10.5194/amt-11-5701-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, F., X. Wu, X. Shao, B. Efremova, H. Yoo, H. Qian, and B. Iacovazzi, 2017: Early radiometric calibration performances of GOES-16 Advanced Baseline Imager. Earth Obs. Syst., 10402, 104020S, https://doi.org/10.1117/12.2275195.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 375 0 0
Full Text Views 2345 1859 113
PDF Downloads 495 103 7