Abstract
Tropospheric hydrostatic delay is one of the major sources of errors in Global Navigation Satellite System (GNSS) navigation and positioning, and an important parameter in GNSS meteorology. This work first proposes a new method of computing zenith hydrostatic delay (ZHD) based on precipitable water vapor (PWV), using radiosonde data. Next, using these calculations as a reference, the performance of three empirical ZHD models and three ZHD integral models in China is assessed using benchmark values obtained from 8 years (2010–17) of radiosonde data recorded at 75 stations across China. Finally, we provide a new revised ZHD model that can be applied to China and validate its performance using radiosonde data collected in China in 2018. The statistical results indicate that the ZHD can be estimated by this new model with an accuracy of several millimeters. Due to its performance and simplicity, this new model is shown to be the optimal ZHD model for use in China.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).